

The Millennium Science Complex University Park, PA

Penn State Integrated Project Delivery / Building Information Modeling Senior Capstone Thesis

Project Team Members

Jason Brognano Lighting/Electrical Designer

Construction Manager

Michael Gilroy Mechanical Designer

Structural Designer

Questions/Comments


David Maser

Stephen Kijak

Location, Size, and Use

- Science Research complex
- 275,600 sq. ft.
- Three above grade floors, penthouse, mezzanine, and basement

Project Overview

Time and Cost

- Design-Bid-Build Delivery
- June 2008 July 2011 Construction \$175,000,000 building cost

Sustainability Features

- LEED Gold Certification
- Green roofs on both wings
- Low VOC materials on interior

\$230,000,000 budgeted overall cost

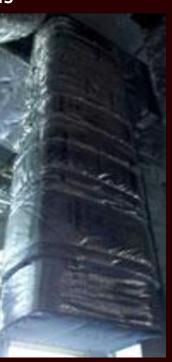
- Daylight integration in perimeter spaces
- CO₂ occupancy density sensors

Construction

CONSTRUCTION PHASE	DURATION (DAYS)	START	FINISH
Notice to Proceed	1	8-12-08	8-12-08
Foundation	270	2-16-09	2-26-10
Superstructure	274	7-7-09	7-23-10
Enclosure	303	11-9-09	1-5-11
Building Systems & Finishes	345	12-14-09	4-8-11
Construction Duration	758	8-12-08	7-7-11
Substantial Completion	1	7-7-11	7-7-11

Project Overview

- All lighting on 480Y/277V supply
- Lutron Ecosystem in public perimeter spaces
- Occupancy and daylight sensor control
- Lighting control panels for exterior spaces
- Campus tied, 12.47kV supply voltage
- Dual 5000A main-tie-main switchgear
- mitigate EMF interference



Lighting and Power Receptacle and small loads On 208Y/120V Rigid conduit and aluminum cladding in electrical rooms to

Mechanical

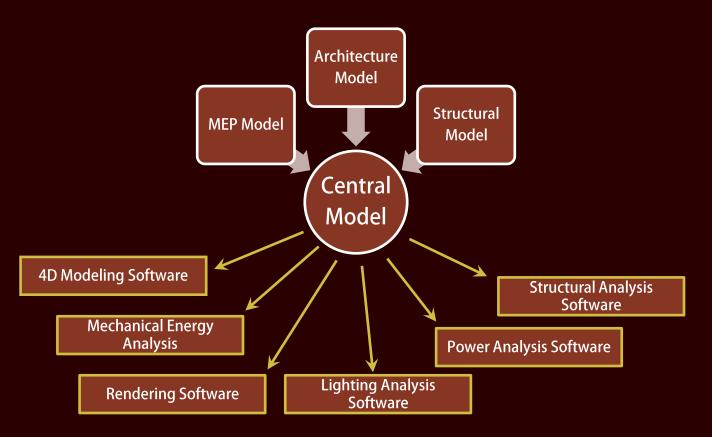
- VAV Reheat Air Distribution
 - (5) 50,000 CFM AHUs deliver 100% OA to General Lab Areas
 - (3) 40,000 CFM AHUs serve Office & Common Areas
 - Animal Care, Quiet Lab, and Clean Room AHUs
- High pressure steam from PSU central plant
 - Reduced to medium and low pressure for use
- PSU campus **chilled water** used for cooling coils AHUs
- Dedicated exhaust system for fume hoods, biosafety cabinets
- CO₂ Sensors throughout to maintain air quality
- 4th floor penthouse and basement mechanical rooms

Project Overview

Steel Structure

- LWT Concrete on 3inch Metal Deck
- Wide Flange Beams and Girders, 21 and 24 inches deep
- 22ft. X 22ft. Bays
- 154ft. Cantilever at the North-West corner of the Building
 - 4 Main Supporting Trusses
 - Web Members Oriented for Axial Compression
 - Moment Connected Members for Stiffness
 - Controlled by Deflection 2 inch Allowance
- Lateral System
 - Shear Walls, Braced Frames, Moment Frames
 - 90% of Lateral Forces Received by Shear Walls
 - Seismic Forces Control
- Foundation
 - Micropiles Beneath Pile Caps
 - Grid of Foundation Beams

Structural


Facade Redesign

IPD/BIM Goals

IPD/BIM Goals

- Update option-specific designs within the appropriate **BIM models**
- Perform analyses using the **Central model** as a base
- Document model sharing processes to achieve design goals
- Work collaboratively to asses repercussions of design changes on all disciplines

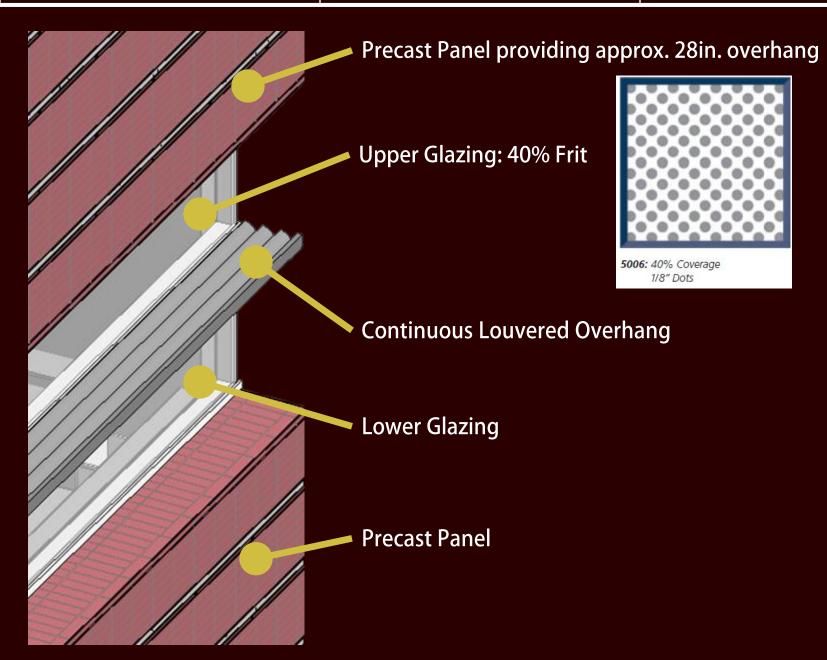
KGB Maser Goals of Analysis

Engineering Goals Decrease energy consumption by 10%

- disciplines: daylight delivery, structural efficiency, mechanical system sizing, and constructability

Reduce size and COSt of structural system

Modify façade to accommodate multiple



1	
Introd	uction

IPD/BIM Goals

Façade Redesign

Distribution Redesign

How does overhang depth affect daylight delivery?

Cantilever Redesign

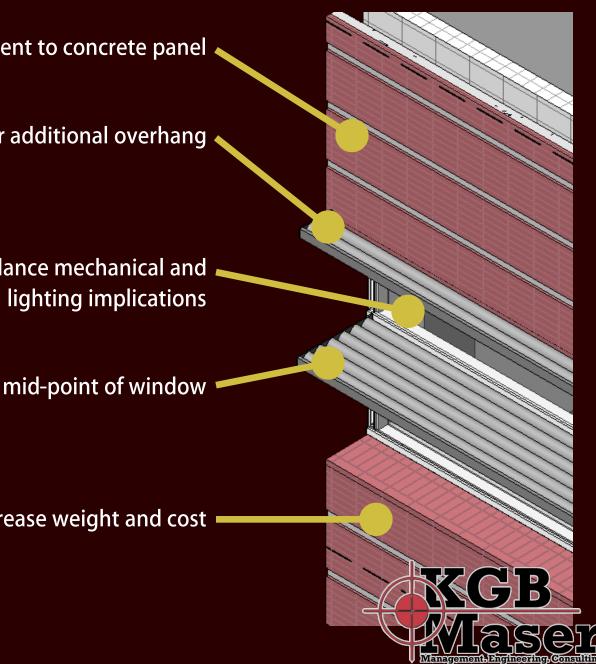
Is it possible to reduce the weight of panels?

Existing vs. Proposed Facade Key Design Issues

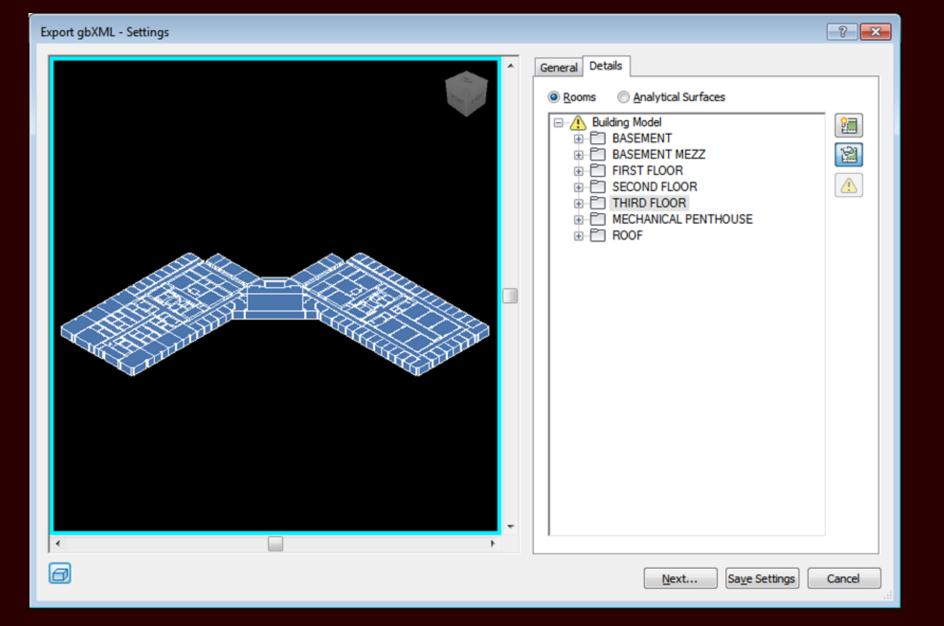
Revised brick attachment to concrete panel

Small louver to allow for additional overhang

Glazing change to balance mechanical and


Larger louvered overhang at mid-point of window

Thinner façade panel to decrease weight and cost


How does overhang depth affect mechanical load?

Summary of Implications

Can all options come to a conclusion that is **beneficial** and cost effective?

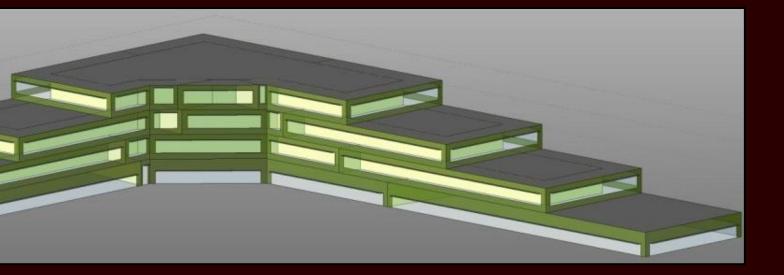
Overhang Investigation: Trane TRACE

🚰 Library / Template Editors -					
<u>F</u> ile <u>V</u> iew Op <u>t</u> ions <u>W</u> indow <u>H</u> elp					
🐔 🕀 🕇 🏛 🆛 🌪 🗎 🖨 合 🛢	2 I Y 1	1400	🖬 🗑 💋		
Shading Library					
Shading type Overhang Description 2.5	• •		<u>Save</u>		
	Value	Units			
Window reveal	O ft		<u>N</u> ew		
Window height	O ft		Сору		
Window width	O ft		0907		
Overhang extends above window by	O ft		<u>D</u> elete		
Overhang extends past right edge by	O ft				
Overhang extends past left edge by	O ft				
Overhang projection out	2.5 t				
projection out				2.5	ft

	Exterr	hal Shading		Overhang -	2.5
TRC .					
<u>T</u> emplates <u>W</u> indow <u>H</u> elp					
ę					TRANE®
	Opening - 1	Opening - 1	Opening - 1	Opening - 1	Opening - 1
Opening Description	Opening - 1	Opening - 1	Opening - 1	Opening - 1	Opening - 1
Wall Description	Wall - 1w	Wall - 1w	Wall - 1w	Wall - 1-w	Wall - 2-s
Room Description	sp-W-321-Neurophys_Invitro	sp-W-322-Neurophys_Invitro	sp-W-325-Neurophys Livitro	sp-W-326-Neurophys_Invitro	sp-W-326-Neuroph
Window / Door	Window	Window	Window	Window	Window
Opening Dimension Type	% Wall Area	% Wall Area	% Wall Area	% Wall Area	% Wall Area
	45.8	45.8	45,8	45.8	100
Opening Length (ft)	0	0		0	0
Opening Height (ft)	0	0	0	0	0
Quantity	0	0	0	0	0
	6mm Dbl Ref D Clear 13mm Argon	6mm Dbl Ref D Cle			
	0.47	0.47	0.47	0.47	0.47
	0.44	0.44	0.44	0.44	0.44
	0	P	0	0	0
Internal Shading	None	None	None	None	None
External Shading	Overhang - 2.5	Overhang - 2.5	Overhang - 2.5	Overhang - 2.5	Overhang - 2.5

Energy Settings

IPD/BIM Goals


? 💌

Façade Redesign

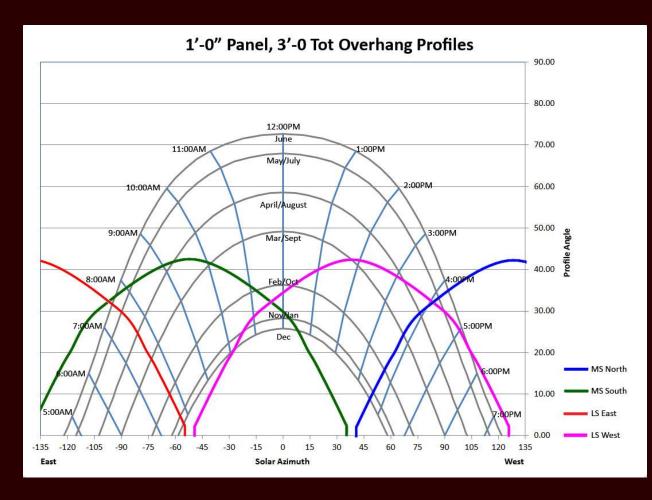
Distribution Redesign

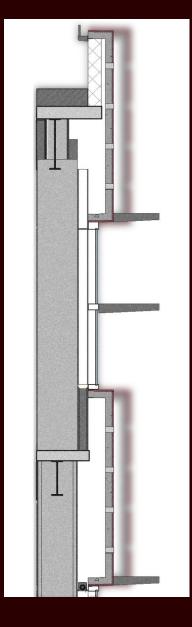
Overhang Investigation: Project Vasari

Parameter Common	Value			

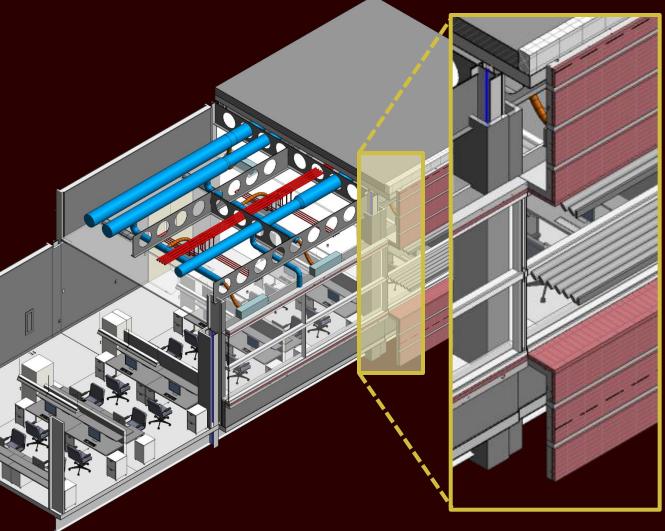
Building Type	School or University			
	Level 1			
Location	40.8015937805176,-77.85958862304			
Detailed Model	*			
Project Phase	New Construction			
Sliver Space Tolerance	1' 0"			
Export Complexity	Complex with Shading Surfa Sha	ade Depth	3' 0"	
Energy Model		and a class.		
Create Energy Model				
Core Offset	22' 0"			100
Divide Perimeter Zones	V			and the
Conceptual Constructions	Edit			
Target Percentage Glazing	48%			
Target Sin Height	5' 0"			
Crazing is Shaded				N
Shade Depth	3' 0"			
Target Percentage Skylights	0%			
Skylight Width & Depth	3' 0"			
Energy Model - Building Services	*			
Building Operating Schedule	12/6 Facility			
HVAC System	Central VAV, HW Heat, Chiller 5.96			
	Edit			

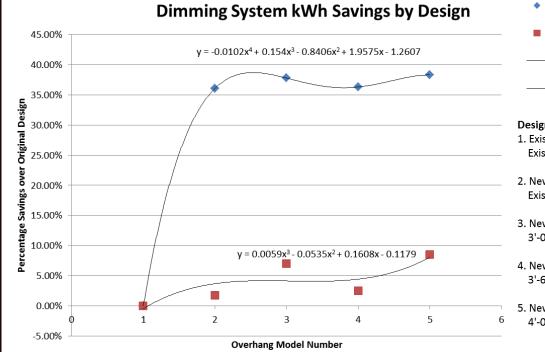
Mass Glazing


Mass Model	Constructions
Mass Exterior Wall	Lightweight Construction – Typical Mild Climate Insulati
Aass Interior Wall	Lightweight Construction – No Insulation
1ass Exterior Wall - Underground	High Mass Construction – Typical Mild Climate Insulatio
Mass Roof	Typical Insulation - Cool Roof
Mass Floor	Lightweight Construction – No Insulation
Mass Slab	High Mass Construction – No Insulation
Mass Glazing	Triple Pane Clear - LowE Hot or Cold Climate
/lass Skylight	Double Pane Clear – No Coating
Aass Shade	Basic Shade
Aass Opening	Air


Questions/Comments

Triple Pane Clear - LowE Hot or Cold Climate


IPD/BIM Goals



Overhang Investigation: Daysim

Questions/Comments

- Total Savings
- Zone Savings
- Estimated Total Savings
- Savings

Designs:

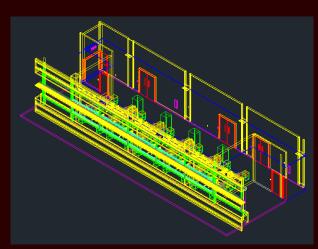
- 1. Existing Lighting, Existing Overhang
- 2. New Lighting, Existing Overhang
- 3. New Lighting, 3'-0" Overhang
- 4. New Lighting, 3'-6" Overhang
- 5. New Lighting, 4'-0" Overhang

Introduction	IPD/BIM Goals	Façade Redesign	Distributi	on Redesig	n C	antilever R	ledesign	Summ	ary of Impl	ications
At 3'-0″ the zone sat Existing System	vings density is as follow 0.5905 kWh/SF applied							gatio nding		
3'-0" Overhang	perimeter area 0.5494 kWh/SF applied	to 14115 SF of	Overhang	g and Glaz	ing Analys	sis: Summ	ary of Effe	ect on HVA	C Operati	ng Cost
	perimeter area	ĊЛС ЛО,		Exis	sting Glaz	ing		Proposed	dGlazing	
Lotal operating cost Existing System the third floor perim	savings at \$0.08/kWh is 8335.34 kWh energy us eter spaces 47754.36 kWh energy us	540.40 for sage	Overhang Depth	2.5	3	3.5	0	2.5	3	3.5
			TRACE Results	\$1,501,728	\$1,494,852	\$1,490,400	\$1,512,576	\$1,481,418	\$1,478,640	\$1,478,268
operating costs by \$	15,8989814444449989898989898989898989898989	Wehanical	Decrease	-	0.45%	0.75%	-0.7%	1.35%	1.53%	1.56%
operating costs by -	23,000		Vasari Results	\$953,470	\$952,430	\$951,956	\$888,241	\$884,272	\$883,823	\$883,286
			Decrease	-	0.11%	0.16%	6.84%	7.26%	7.30%	7.36%

	Energy Savings (kWh)													
Design Overhang	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sept	Oct	Nov	Dec	Total	% Savings
Actual Grand	135.01	112.46	118.70	107.26	123.12	117.71	117.71	123.17	113.72	127.98	128.93	125.25	1451.08	0.00%
New Grand	100.58	78.23	73.52	61.91	70.60	63.21	63.13	69.44	70.10	83.76	93.91	99.26	927.72	36.07%
3' Grand	97.35	75.36	70.71	60.18	68.73	62.67	62.82	67.96	67.78	81.56	91.47	96.10	902.75	37.79%
3.5' Grand	100.16	77.80	73.03	61.65	70.54	63.10	63.02	69.23	69.73	83.36	93.51	98.95	924.12	36.32%
4' Grand	96.29	74.55	70.08	59.68	68.31	62.60	62.78	67.51	67.09	80.87	90.47	95.06	895.33	38.30%
Actual Zone	49.61	38.20	37.02	33.01	37.73	36.03	36.03	37.78	35.75	42.59	47.24	47.28	478.33	0.00%
New Zone	60.40	43.29	35.08	26.96	30.42	24.77	24.69	29.25	33.41	43.58	55.47	62.57	469.95	1.75%
3' Zone	57.17	40.42	32.27	25.24	28.55	24.23	24.38	27.77	31.09	41.38	53.04	59.41	444.99	6.97%
3.5' Zone	59.97	42.86	34.59	26.70	30.35	24.66	24.58	29.05	33.04	43.17	55.07	62.26	466.36	2.50%
4' Zone	56.11	39.61	31.64	24.74	28.12	24.16	24.34	27.32	30.40	40.68	52.03	58.36	437.57	8.52%

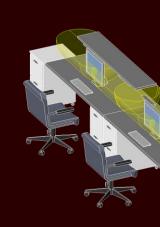
Orientation Change Summary								
Docian Overbana	MS South kWh	Mat. Science North		Life So	ience East	Life Science West		
Design Overhang	from Table X	Total kWh	% of MS South	Total kWh	% of MS South	Total kWh	% of MS South	
Actual Grand Total	1451.08	1446.46	99.68%	1457.40	100.44%	1447.28	99.74%	
Actual Zone Total	478.33	473.70	99.03%	484.65	101.32%	474.53	99.2 1%	

IPD/BIM Goals


Façade Redesign

Distribution Redesign

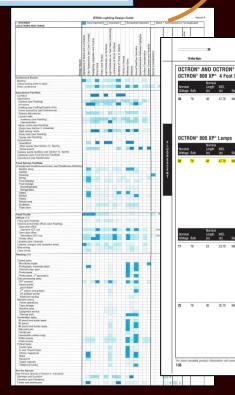
StudentExport.rvt

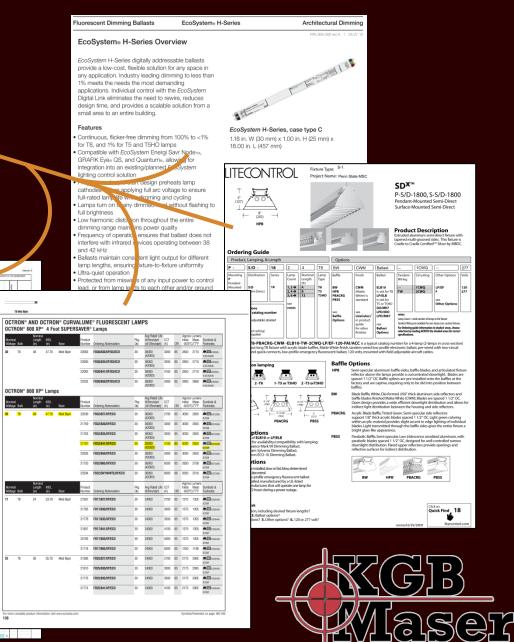

StudentExport.AGI

Export parameter change to "ACIS Solids"

StudentExport.dwg

Import to AGI32 where material properties are assigned

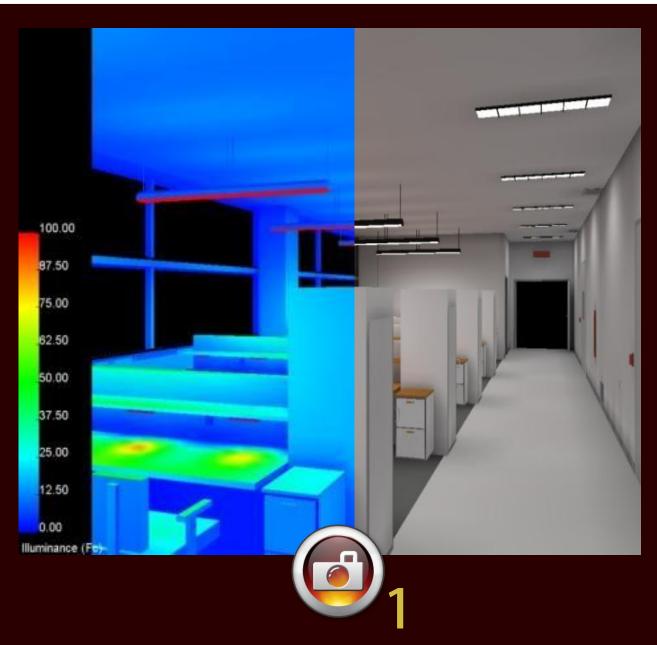

Lessons Learned


Acknowledgements

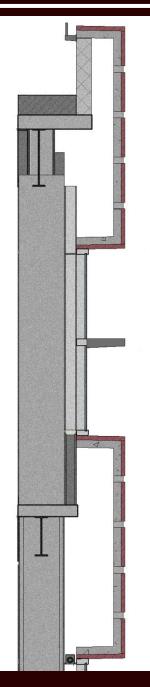
Impact on Lighting Design

~	
THE REAL	
	X X X X X X X X X X X X X X X X X X X

Name:	2xT8 BW			•	
Parameter	Value	Formula	Lock	*	Family Types
Electrical - L	oads	•	*	1	New
Apparent Lo	32.65 VA	=			Rename
Dimensions			\$		
Width	8.000	=	V		Delete
Length	48.000	=			
Height	5.000	=		E	Parameters
Photometric	s		\$	=	
Tilt Angle	-90.000°	=			Add
Photometric	12-SDx-2x	=			Modify
Light Loss Fa		=			
Initial Intensi	64.00 W @ 9	=			Remove
Initial Color	4100 K	=		÷	
C	Ж	Cancel	App	ly	Help



			Study <i>i</i>	Area Illuminance	e Summary	
Space	Illu	iminance	(fc)	Max./Min.	Coeff. Of Variation	Uniformity Gradient
Space	Min.	Avg.	Max.		COEII. OF Variation	official and the second s
Study Area	9.0	36.5	106.0*	11.73	0.47	2.47
Only	9.0	50.5	100.0	11.75	0.77	2.77
Corridor Only	4.5	9.36	10.8	2.40	0.15	1.31
Student Area	15.0	34.3	55.0	3.67	0.27	1.42
Combined	13.0	54.5	55.0	5.07	0.27	1.42
Corridor	7.3	20.0	25.3	3.47	0.23	1.38
Combined	7.5	20.0	23.5	5.47	0.25	1.20

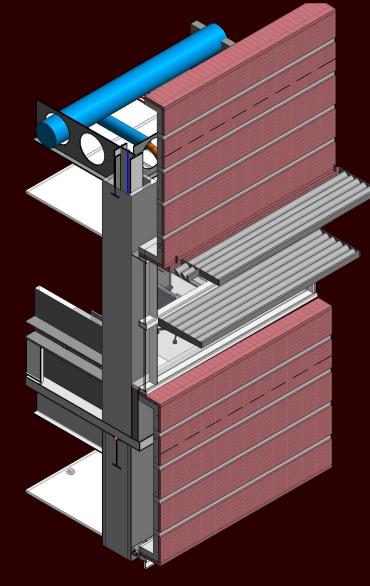


Impact on Lighting Design

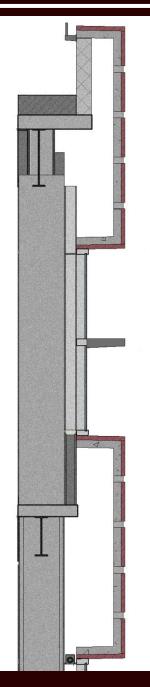
Acknowledgements

Existing Conditions

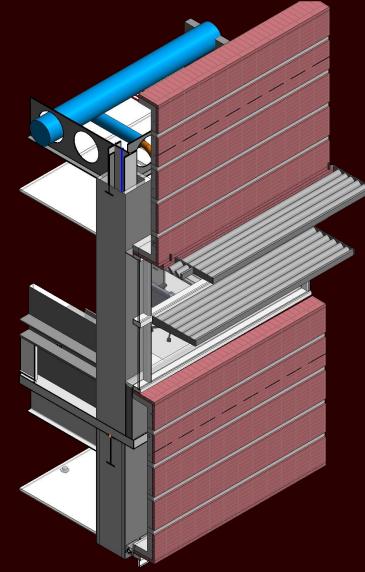
- 27.6" Deep
- 6" Thick Concrete at Face
- 2["] Facebrick
- Largest Panel 21ft. Wide by 11ft. Tall Gravity Controlled Design
- Prone Position Causes Greatest Stress
- 2 Bearing Connections at Either End
- 2 Lateral Connections at Either End


	Crackin	g Stress		
(factored)	477.2971	psi		
S	elf Weight	Check Pron	9	
Weight/in.		8.53125	lb./in.	(factored)
Inertia of S	trip	76.765625	in.4	
Moment		16695.94	lb.in.	
Stress		462.17134	psi.	ОК

Summary of Implications

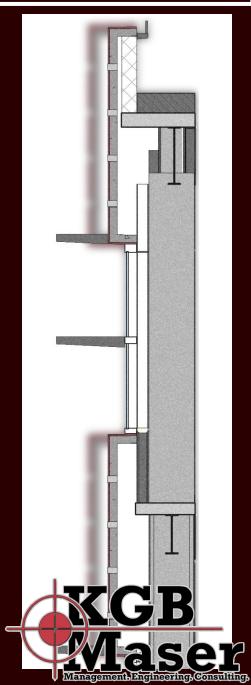

Lessons Learned

Panel Depth Assessment


Existing Conditions

- 27.6" Deep
- 6" Thick Concrete at Face
- 2["] Facebrick
- Largest Panel 21ft. Wide by 11ft. Tall Gravity Controlled Design
- Prone Position Causes Greatest Stress
- 2 Bearing Connections at Either End
- 2 Lateral Connections at Either End

	Crackin	g Stress		
(factored)	477.2971	psi		
S	elf Weight	Check Pron	9	
Weight/in.		8.53125	lb./in.	(factored)
Inertia of S	trip	76.765625	in.4	
Moment		16695.94	lb.in.	
Stress		462.17134	psi.	ОК


Panel Depth Assessment

Redesign

- 15.75" Deep
- 5" Thick Concrete at Face
- 1/2["] Facebrick
- Largest Panel 21ft. Wide by 11ft. Tall Wind Controlled Design
- Prone Position Causes Greatest Stress
- 2 Corbel Connections at Either End
- 2 Lateral Connections at Either End

Re	Required Steel					
Vu.max=	189	k.				
As.req=	0.44	in.2				
µe=	3.4					
As.req=	0.32	in.2				
As.min=	0.77	in.2				
As=	0.77	in.2				
Ah=	0.30	in.2				
Ldh=	8.91	in.				

IPD/BIM Goals

Properties	8
Stacked Wall Exterior - Brick Over Precast Return 1	-
Stacked Walls (1)	
Constraints	* *
Location Line	Wall Centerline
Base Constraint	SECOND FLOOR
Base Offset	-8' 8 5/8"
Base is Attached	
Base Extension Distance	0' 0"
Top Constraint	Up to level: SECOND FLOOR
Unconnected Height	11' 8 5/8"
Top Offset	3' 0"
Top is Attached	
Top Extension Distance	0' 0"
Related to Mass	

			Ex	isting Pre-Cast			
Total (SF)	Material	Labor	Equipment	Total	Cost	Time	0 & P
72319.11	27.3	1.74	1.63	30.67	\$2,218,027	\$2,816,894	\$3,295,766
		т	OTAL COST =	\$3,295,766.47			
			Re	design Pre-Cast			
Total (SF)	Material	Labor	Equipment	Total	Cost	Time	0 & P
72319.11	25.03	1.74	1.63	28.4	\$2,053,862	\$2,608,405	\$3,051,834
		т	OTAL COST =	\$3,051,834.62			

Dimensions

Length	363' 0"
Area	4253.91 SF

Volume

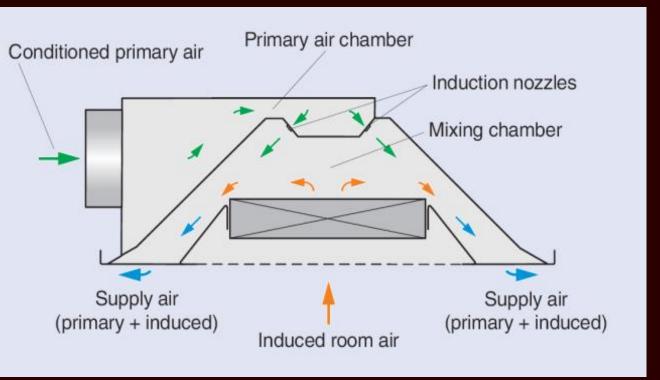
Phase Demoilsneg	: None	
	none	*
Enable Analytical Model		
Horizontal Projection	Auto-detect	
Top Vertical Projection	Auto-detect	
Bottom Vertical Projection	Auto-detect	
		_
Properties help		Apply

Cost Assessment

Cost Savings = \$240,000

IPD/BIM Goals

Façade Redesign


Distribution Redesign

Existing VAV Distribution System Energy efficient design that can be **easily controlled** to space airflow needs

Familiar system for designers and contractors

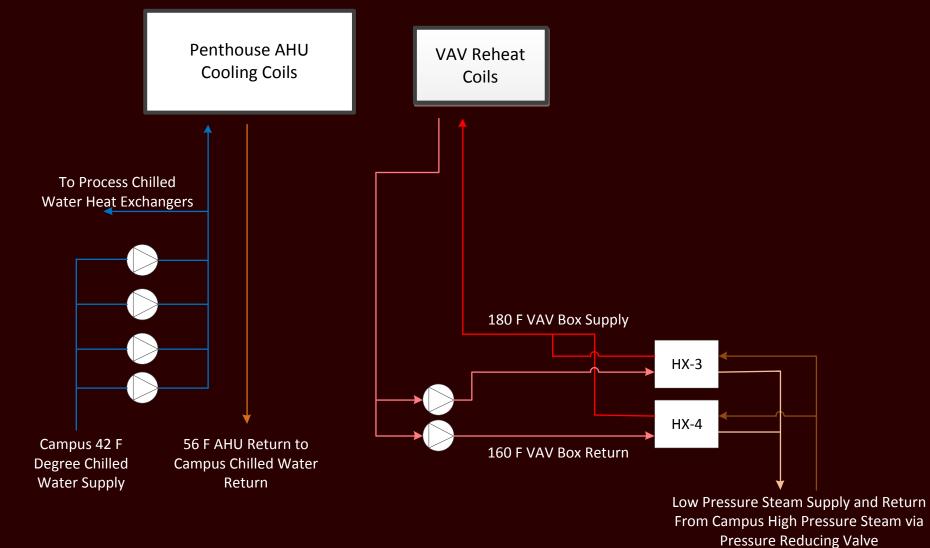
Less pumping energy required

Existing vs. Proposed Distribution

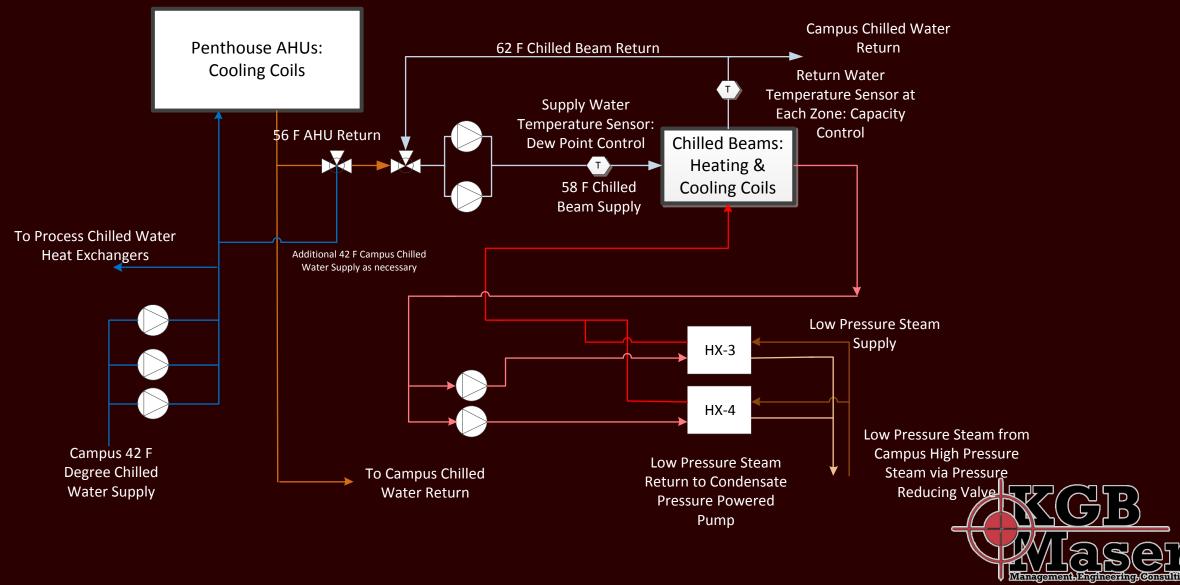
Takes advantage of the higher Specific heat capacity of water

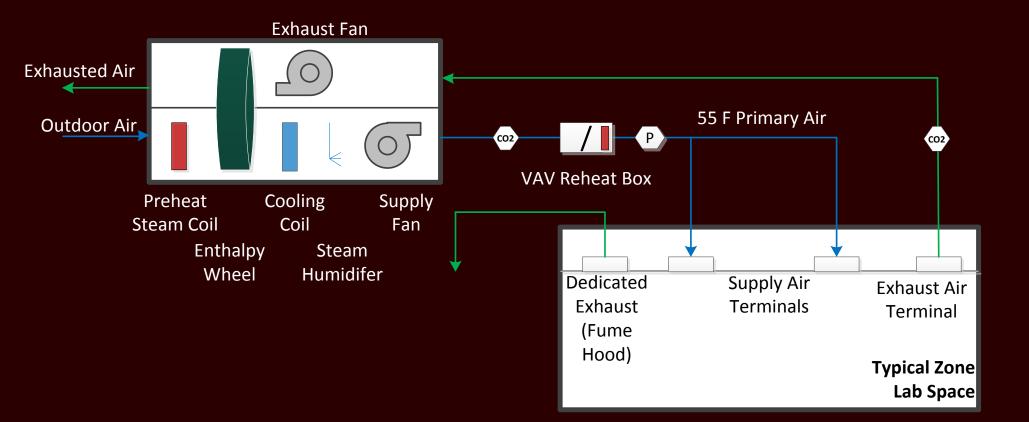
More concern for handling latent loads

Higher initial cost

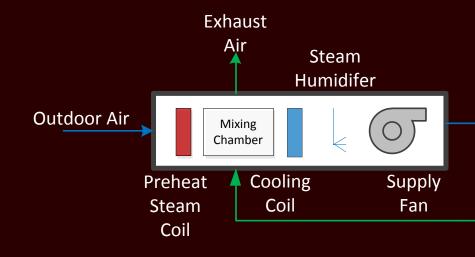

Fan energy saved, pumping energy increased

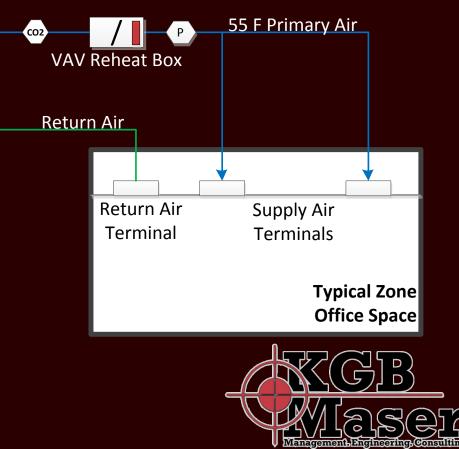
Proposed Active Chilled Beam Distribution System

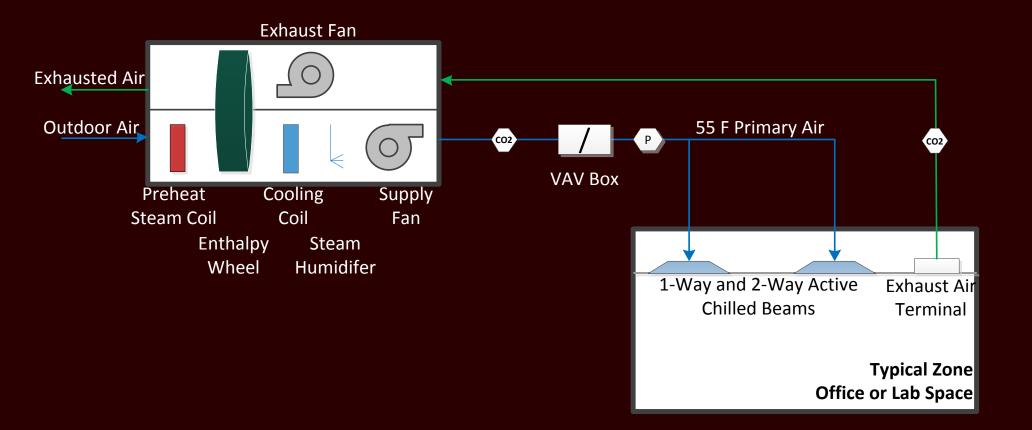

Existing VAV Water Flow Diagram

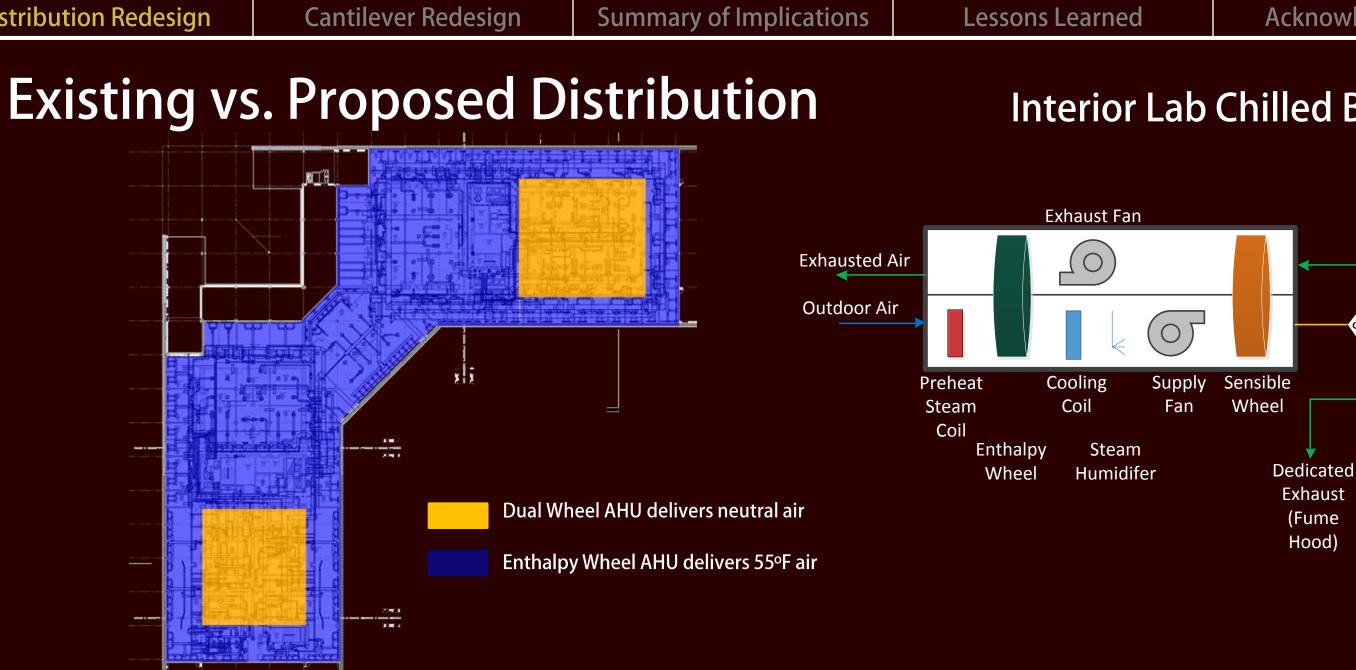

Existing vs. Proposed Distribution

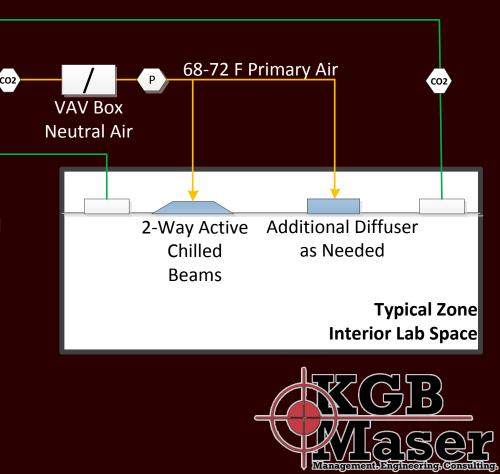
Proposed Chilled Beam Water Flow Diagram

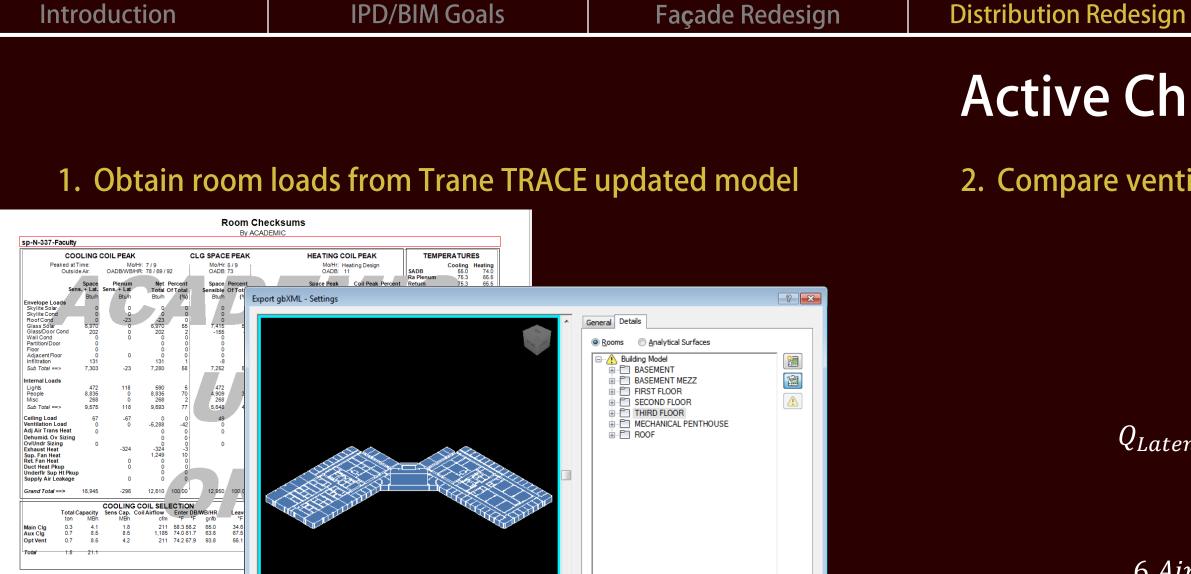

Existing Lab VAV Air Flow Diagram




Existing vs. Proposed Distribution


Existing Office VAV Air Flow Diagram




Perimeter Zone Chilled Beam Air Flow Diagram

Interior Lab Chilled Beam Air Flow Diagram

Next... Save Settings Cancel

Project Name: Millennium Science Com Dataset Name: 4-2 MSC FINAL.TRC

Active Chilled Beam Design Process

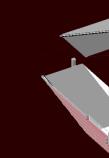
2. Compare ventilation needs: ASHRAE 62.1, Latent, Air Changes

Office: 0.06 * *SF* + 5 * *People Labs*: 0.18 * SF + 10 * People

q_{latent} Q_{Latent CFM} $(0.68 x (W_{room} - W_{Primary}))$

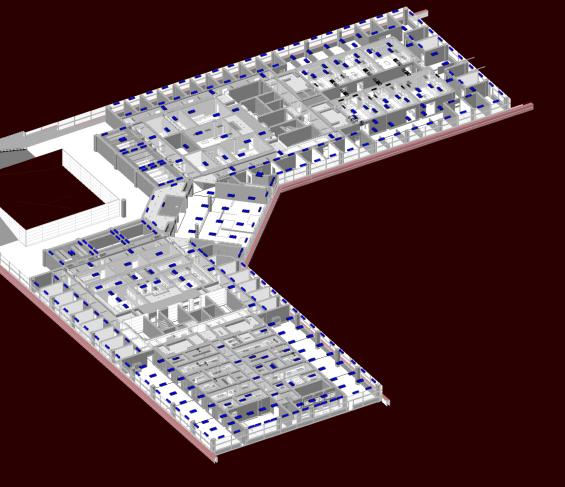
6 Air Change Minimum for Lab Spaces

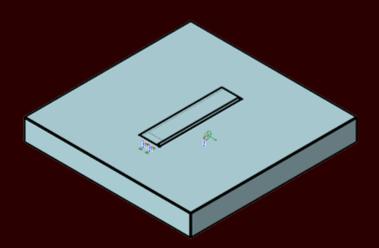
3. Select Chilled Beam Manufacturer


Questions/Comments

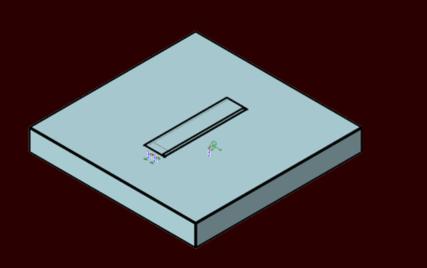
Active Chilled Beam Linear ACBL / ACBL-HE price roduct Featur Aceive Chilled Beam Linea ACBL / ACBL HE Endourse Opening of KD Gravestan Here 12:00 performance, asso of installation sine maintainance. The ACEL induces reco-through the bacal axishinger, mixes it supply air and delivers the combine tites me into the occupied some via a tites me into the occupied some via a tites into the occupied some via a not isosit to many different install configurations and the beyprofile ma utilable in both new and reductished b suitable in both new and rolutished butk ing. Childs bears on he assily integrata into suppendia and drywal collings. AGU-HE is an upgraded high afficient model which machinese coording and hasis ing capacity part with o primary aintow. Fearures and tway discharging option. Adjustable monthly broaders for asse of instatation - Hingd access to a low easy room-side access to ha coil and any control component iponent t damper option for easy balancir vick planum option hides beam inter-asing Conseruceion Hasvy duty aluminum face Stael plenum White powder cost finish seer Cell Conservation Product Selection Checkli Select chilled team size based on piping system and desired performance char 2) Select face shife and finishing options Example: ACBL / 24 / 32 / 32/88 / 12⁻⁵ SWT / 3-Pips / B12 Pressure tested copper piping H-57 ine. Einend levented in the surface of liveria

Active Chilled Beam Design Process


4. Reference RCP & Manufacturer Selection Spacing Program


DID 632 T	wo Wa	y Acti	ve Ch	illed B	eam Select	tion Prog	gram
Input DID	4 pip	e coil	2 pip	e coil	Project	Room-No.	Comment
Input DID	c ooling	heating	cooling	heating			
Vwater DID	1.25 GPM	1.25 GPM	1.00 GPM	0.50 GPM			
Unit length		4.0)ft				
Nozzl e-ty pe		l					
Vair-primary DID		140.0	CFM				
Connection-diameter / primary air		6	in				
Input Temperatures	coc	ling	hea	ting	Input Room Di	nensions	
Tair-primary	55.0	0°F	55.	0 °F	Room Height (H)	11.0 ft	
		50.0 %		50.0 %	A	12.0 ft	
Troom / rel. Humidity	75.0 °F	53.0 %	70.0 °F	50.0 %	х	10.0 ft	
Twater-flow	58.0	D°F	95.	0 °F	Occupied Zone Height	6.0 ft	
TROX® TECHNIK The art of handling air						Beam Spacing (A	
Results	4 pipe coil		2 pipe coil				
	c ooling	heating	cooling	heating			
∆twater	-4.9 °F	5.9 °F	-6.7 °F	14.8 °F		LA ISUP	
Twater-return	62.9 °F	89.1 °F	64.7 °F	80.2 °F		VH1, ΔTH1	
ΔT room - water flow	-17.0 °F	25.0 °F	-17.0 °F	25.0 °F	_		
ΔT Room water average	-14.5 °F	22.0 °F	-13.7 °F	17.6 °F		†	
Q water DID	-3085 BTUH	3694 BTUH	-3332 BTUH	3705 BTUH	VL, ΔTL	Occupied Zone Hei	ght
Q air DID	-3048 BTUH	-2297 BTUH	-3048 BTUH	-2297 BTUH		ţ	_
Q DID	-6133 BTUH	1398 BTUH	-6380 BTUH	1408 BTUH			
∆P water	1.7 ft WG	2.0 ft WG	4.8 ft WG	1.4 ft WG			
∆P air		0.68 in	ch WG	·			
NC (Incl. 10 dB room absorbtion)		3	0				
	calculation _l	orogram is	only applica	ble to DID6	32 beams manufactu	red by TROX US	Α.
Termi	inal Velocities an	d Temperatures			Support Va	lues	TROX USA, Inc
vL2 (measured 2" from wall)	91 FPM	64 FPM	91 FPM	64 FPM			4305 Settingdown Circle
vL6 (measured 6" from wall)	55 FPM	38 FPM	54 FP M	38 FPM	N-nozzles total	90	Cumming, GA 30028
vH1	53 FP M		53 FP M		Aeff	0.046295 ft ²	Phone: (770) 569-1433
ΔTL	-1.7 °F	0.1 °F	-1.6 °F	0.1 °F	veff	3024 FPM	Fax: (770) 569-1435
ΔTH1	-0.8 °F		-0.7 °F		H1	5.0 ft	www.TROXUSA.com
∆Tsupply	-15.8 °F	2.8 °F	-15.1 °F	2.8 °F	L	15.0 ft	Version 1.8
Connection-diameter / primary air	DID6		DID6		room air dew point-cooling	56.7 °F	1/21/2011
			-		nended (see user notes fo umes no liability for the associated system desig		USA, Inc 2010

5. Use RCP to place beams in space in Revit MEP model



Active Chilled Beam Design Process

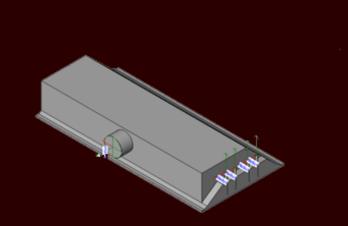
ipe-Price_Industries		
let 4" Duplicate		
Rename		
	_	
Value	1	
\$:	
4' 0"		
\$		
Steel		
\$		
2317.00 Btu		
3877.00 Btu		
1 GPM		
\$		
0' 11 177/256"		
0' 917/128"		
0' 0 1/2"		
0' 2"		
\$		
http://price-hvac.com/catalog/H		
ACB1		
Price Industries		
Active Chilled Beam 1 way		
	Image: Constraint of the second sec	

Sum

Para

Flow Con[®]

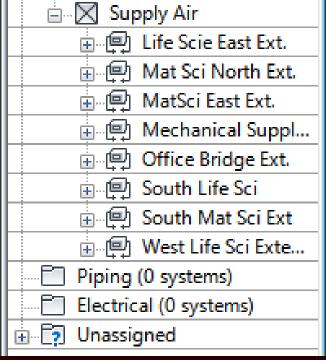
Flow D


Fa

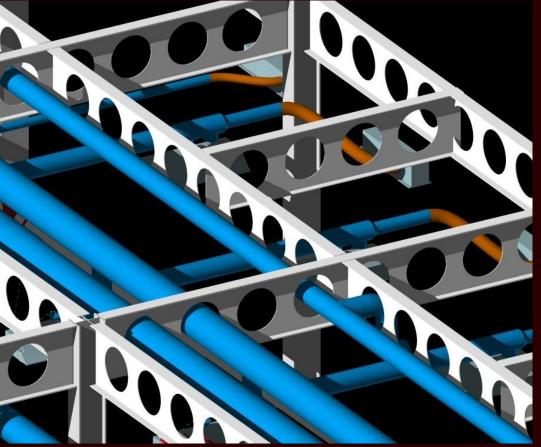
Locatio

Air

nmary of TROX Ch	illed Beam Adjust	ments
meter	Downloaded Setting	Adjusted Setting
nfiguration	Calculated	Preset
Direction	In	In
mily	Air Terminal	Mechanical Equipment
on of Inlet	Side	Top (Cost Option)
Flow	Instance: Keeps CFM constant for the same family	Type: Allows different CFM for same family


6. Adjust Chilled Beam Families in Revit

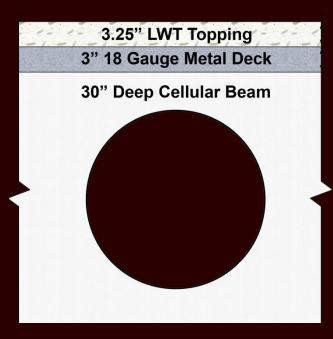
amily: mpg-Air Terminal_Trox	USA_DID632-MF Load.		
ype: 4 x 4	▼ Quplicat	e	
	Rename	e	
ype Parameters Parameter	Value		
Mechanical		â	
Water Pressure Drop	2.100 psi		
Heating Water Leaving Temperat			
Heating Water Entering Tempera			
Chilled Water Leaving Temperat	59.00 °F		
Chilled Water Entering Temperat	63.00 °F		
Actual Heat Water Flow	0 GPM		
Mechanical - Airflow		\$	
OA Flow	0 CFM		
Nozzle Type	Nozzle Type : K		
Heating Air Entering Temperatur	55.00 °F		
Cooling Air Entering Temperatur	55.00 °F		
Mechanical - Loads		*	
Water Heating Capacity	5267.00 Btu/h		
Water Cooling Capacity	3267.00 Btu/h		
Total Heating Capacity	5267.00 Btu/h		
Total Cooling Capactiy	6317.00 Btu/h		
Air Heating Capacity	0.00 Btu/h		
Air Cooling Capacity	3050.00 Btu/h		

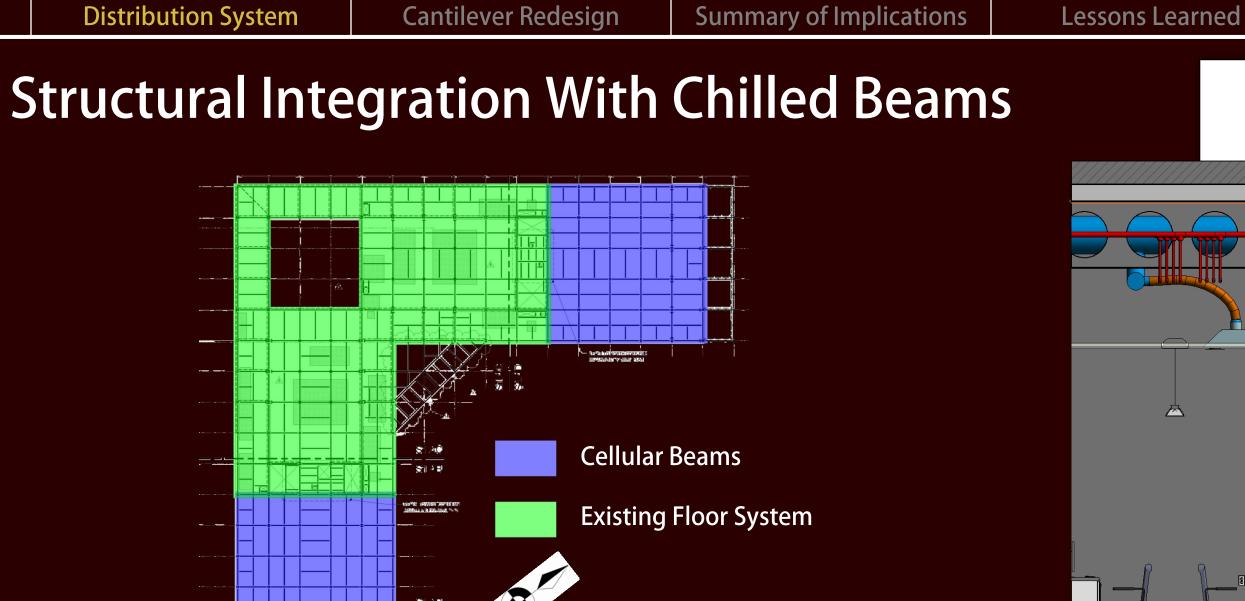


Introduction	IPD/BIM Goals	Fa ç ade Redesign	Distribution Redesig
			Active Ch
7. Create System	ms so Revit can calculate	Duct, Pipe Sizes	8. Pla
	MSC MECHANICAL_mpg5034.r 🔯		
	Systems		
	Supply Air		
	⊕		
	i i i i i i i i i i i i i i i i i i i		

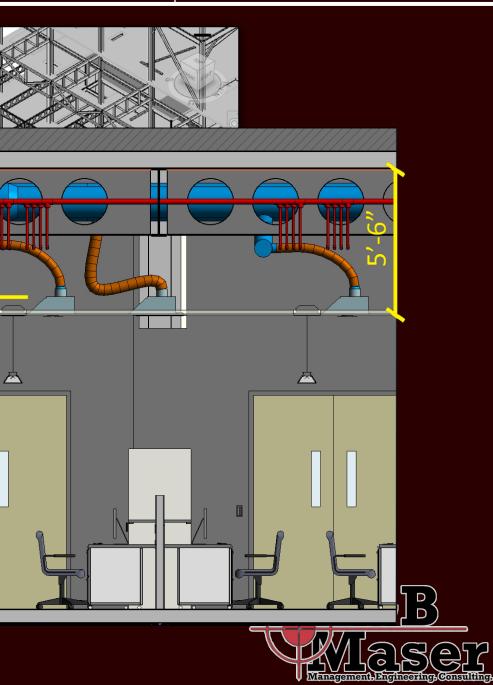
hilled Beam Design Process

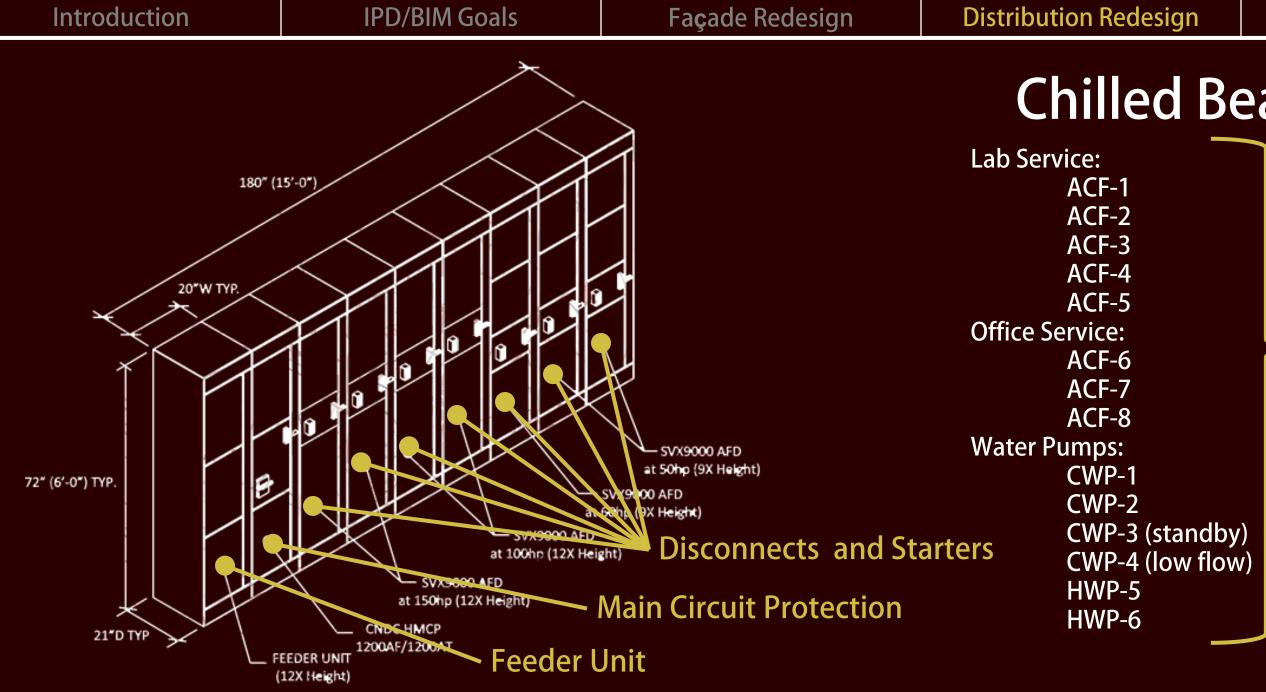
lace main duct runs in cellular openings

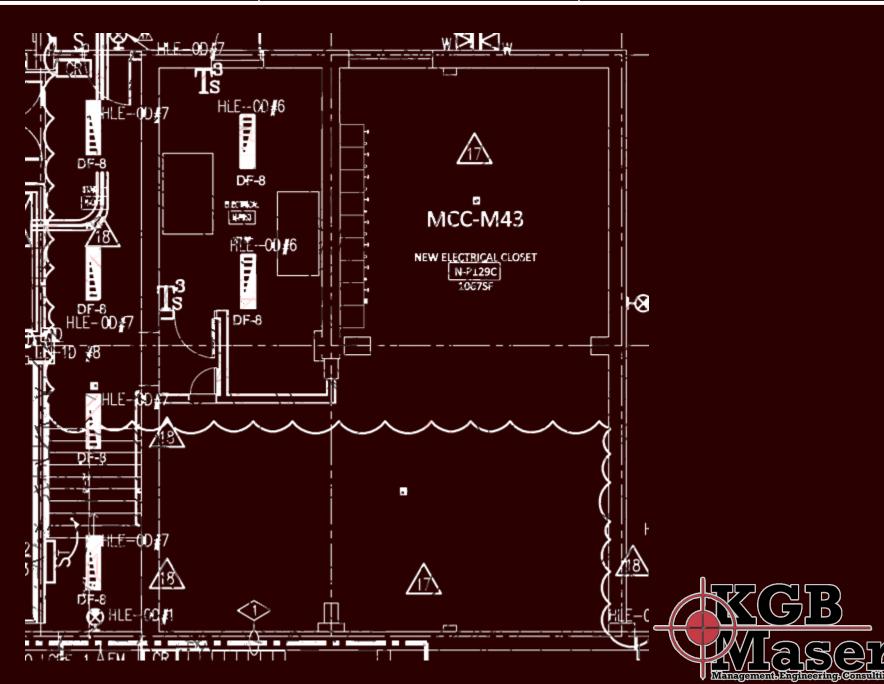


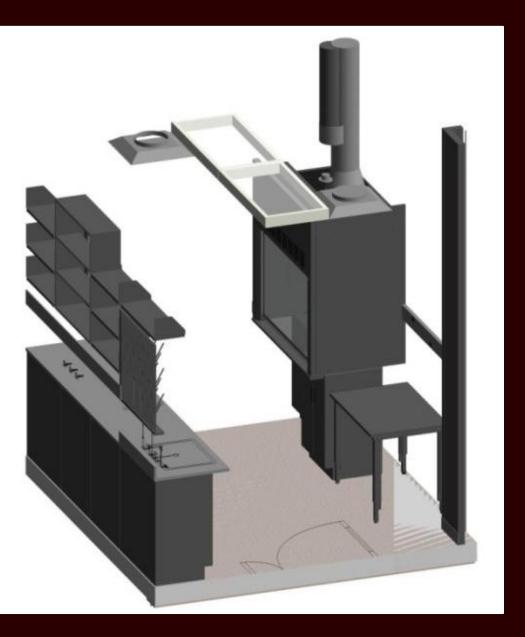

- Existing Composite Floor System
- 22ft. X 22ft. Bays
- 21in. Deep Wide Flange Beams
- 24in. Deep Wide Flange Girders
- Floor Supports Green Roof
- NWT Concrete

12	3.25" LWT Topping
	3" 18 Gauge Metal Deck
	W24 Girder
•	

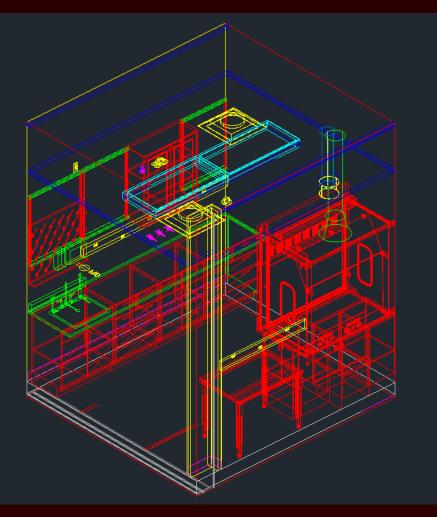

Redesign


- 30in. Deep Cellular Beams
- LB30X44 Beams
- LB30X57 Girders
- Lighter Bays

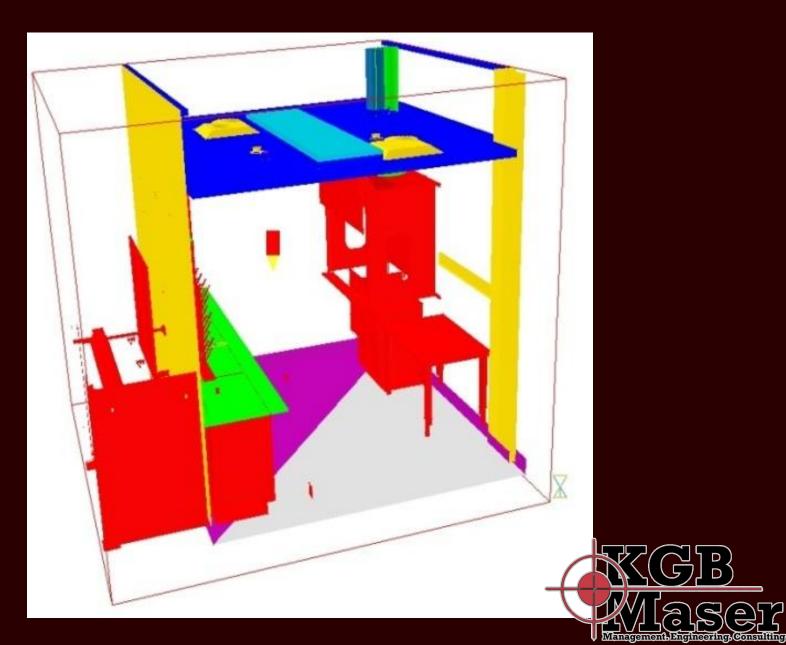

Acknowledgements


Chilled Beam Electrical Reaction

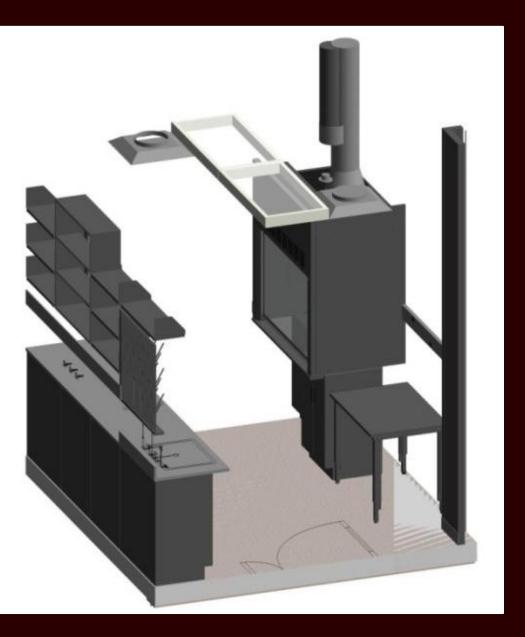
Labs/Offices: AHU-EXT-1 AHU-EXT-2 Interior Spaces: AHU-INT-LS1 AHU-INT-LS2 AHU-INT-MS1 AHU-INT-MS2 Consolidated to MCC: CWP-1 CWP-2 (standby) CWP-3 CWP-4 (standby) CWP-5 (low flow) HWP-5 HWP-6 (standby)

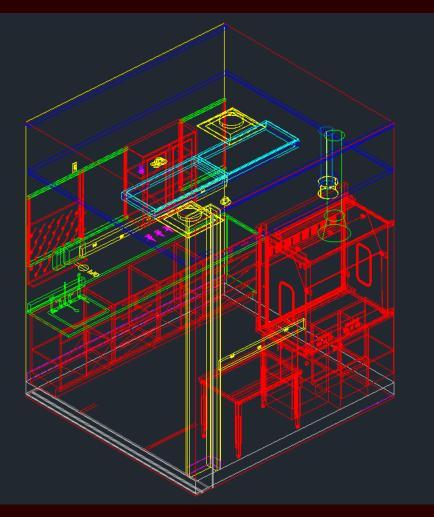


Fume Hood Face Velocity Testing: Software Process

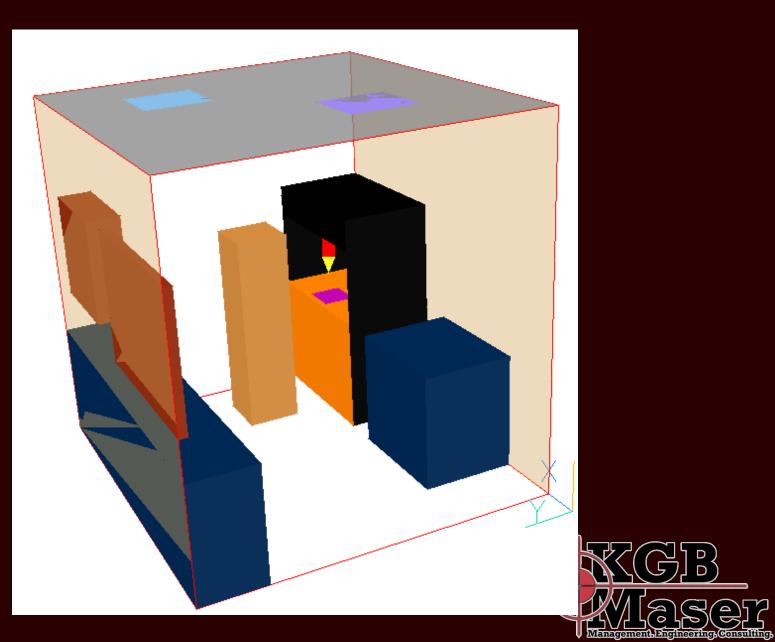

Section Box applied to W324A-Hot Room

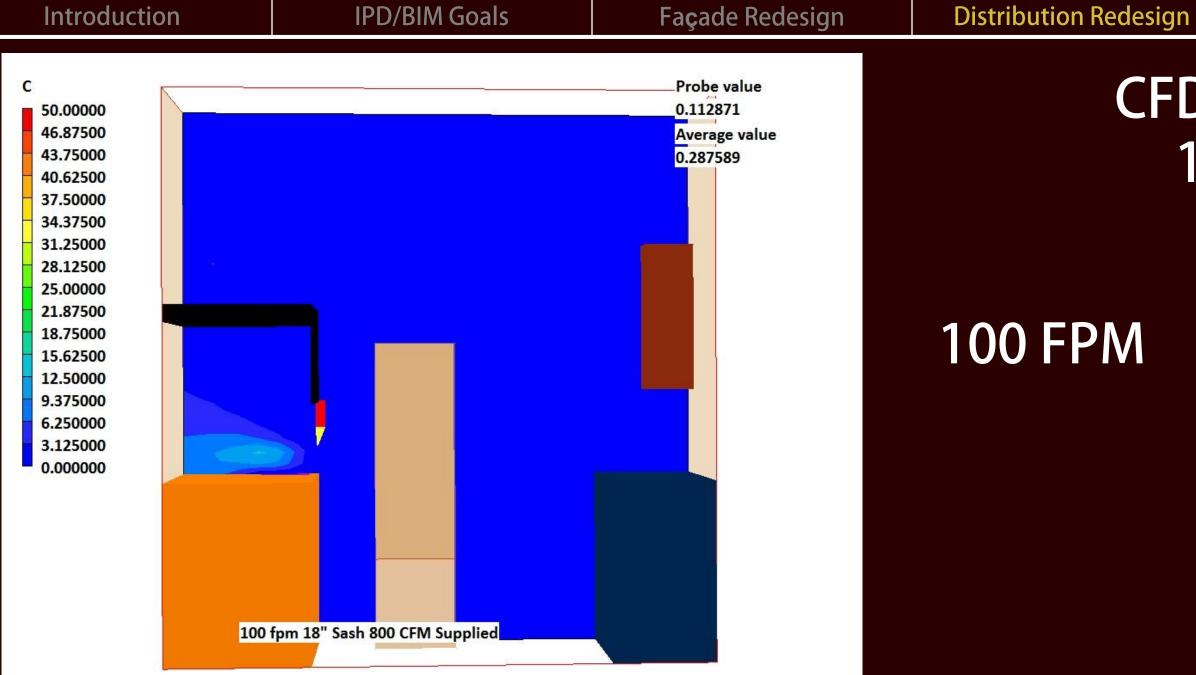
DXF Export from Revit Architecture


Attempted import as geometry into Phoenics 2009


Acknowledgements

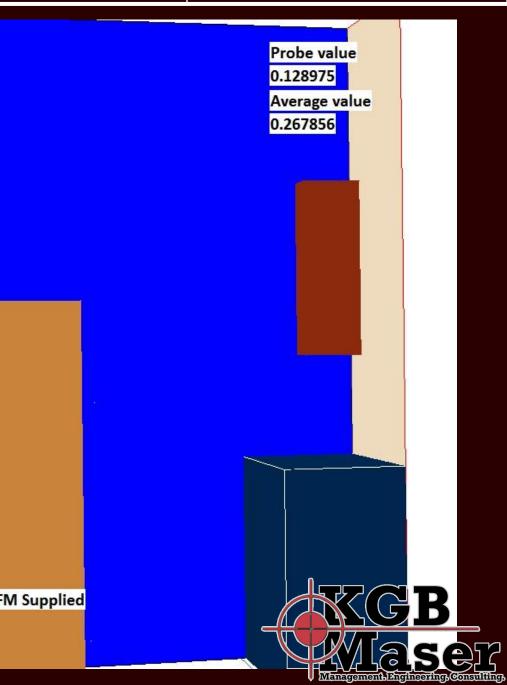
Fume Hood Face Velocity Testing: Software Process

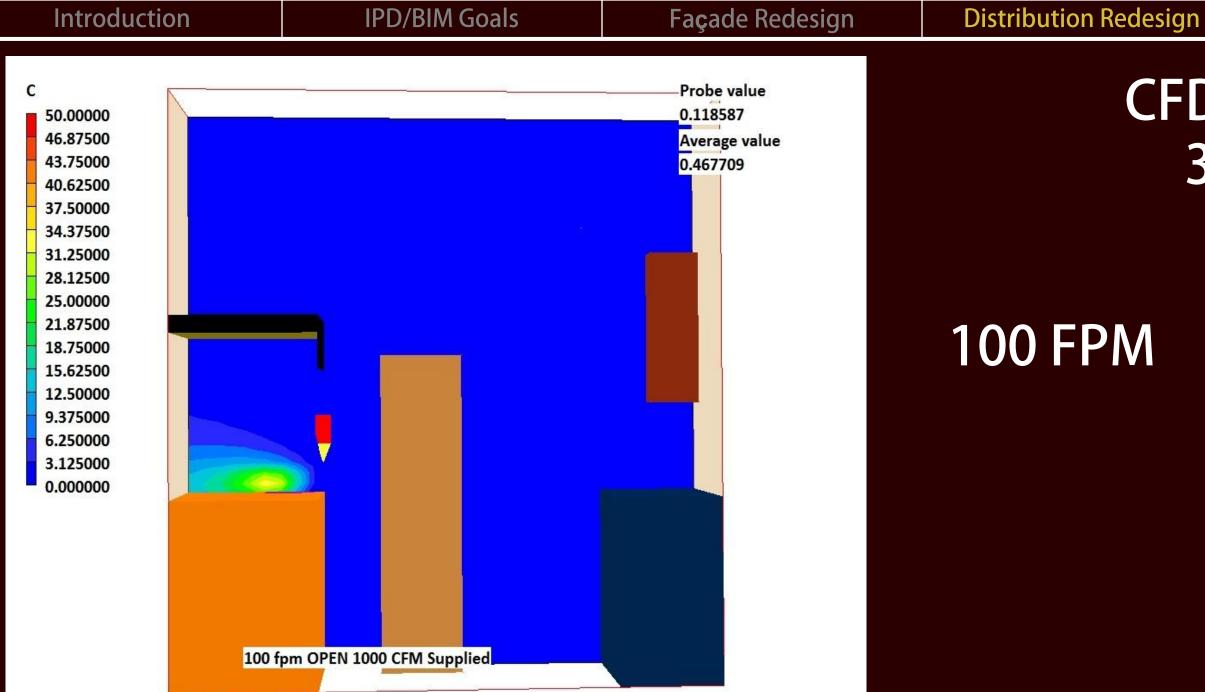

Section Box applied to W324A-Hot Room


DXF Export from Revit Architecture

Final Model created with Phoenics elements

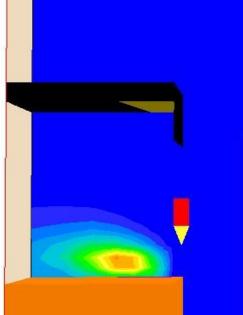
Acknowledgements



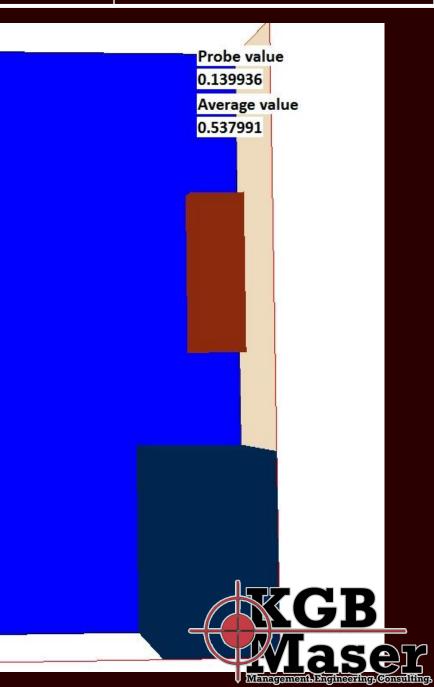

CFD Contaminant Test: 18" Sash Position

С				
	50.00000			
	46.87500			
	43.75000			
-	40.62500			
	37.50000	ļ		
	34.37500			
	31.25000			
	28.12500			
	25.00000			
	21.87500			
H	18.75000	1		
	15.62500			
	12.50000			
	9.375000			
	6.250000			
	3.125000			
	0.000000			
			80 fpm 18" Sash 500 CF	N

Acknowledgements



CFD Contaminant Test: 30" Sash Position


80 FPM

•		
	50.00000	
	46.87500	
	43.75000	
	40.62500	
	37.50000	
	34.37500	
	31.25000	
	28.12500	
	25.00000	
	21.87500	
	18.75000	
	15.62500	1
	12.50000	
	9.375000	
	6.250000	
	3.125000	
	0.000000	

80 fpm OPEN 800 CFM Supplied

Acknowledgements

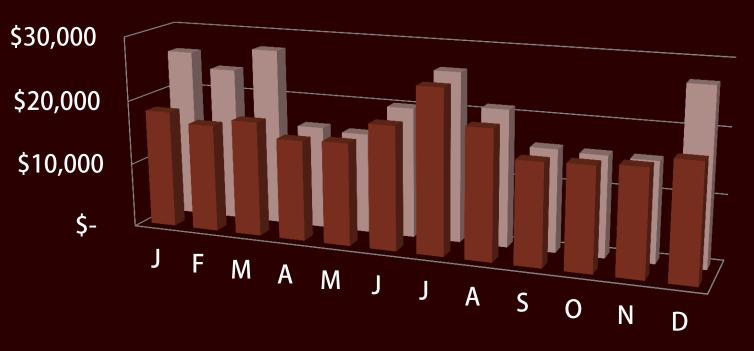
Introduction	IPD/BIM Goals	Fa ç ade Redesign	Distribution Redesig
			F
			1. Face Velocity not 30"
			2. 14.2% I hood in 80 fp
			3. 18.0% I hood in 80 fp
			4. All contamina SOURCE,
			5. 31.94%

Fume Hood Results vachieved during 18" simulations,

- **more** contaminant present at face of fume pm, 18″ sash
- **more** contaminant present at face of fume pm, $30^{\prime\prime}$
- nant readings less than 0.015% of
- drop significantly at Human
- energy savings from conditioning less air

Summary of Fume Hood N Metric Cooling/Dehumidification Heating Fan Humidification **CAV** Operation Costs **VAV Multiplier for Operation** Adjusted Operation Costs Percent Savings

Aakeup Air Costs and Savings					
	100 fpm VAV	80 fpm ACBs			
	\$233,356	\$122,597			
	\$6,479	\$13,447			
	\$110,512	\$81,042			
	\$17,610	\$33,343			
	\$367,958	\$250,431			
	0.32	0.32			
	\$116,704	\$79,428.			
31.94%					

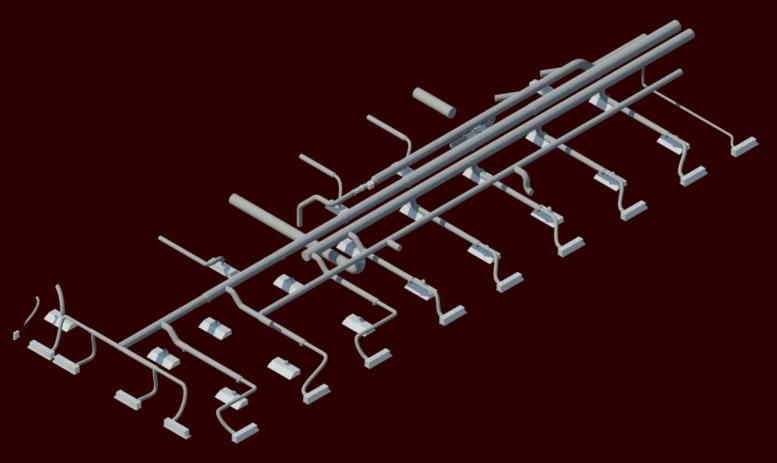


مرك مر ا	~ d	
Intr	oau	ction

3 rd Floor and Estimated Building Operating Costs						
3 rd Floor Building						
Existing VAV	Building Energy kBtu/yr	16,478,534	98,871,204			
	Operating Costs \$250,288		\$1,501,728			
	Cost/SF	\$5.84/ft ²				
Proposed ACB +	Building Energy kBtu/yr	13,912,786	83,476,716			
Triple Pane	Operating Costs	\$214,983	\$1,289,898			
Glazing	Cost/SF	\$5.02/ft ²				
Percent Savings 14.1		1%				

Energy Model Results

Monthly Operating Costs


■ Active Chilled Beams ■ VAV

Mechanical Equipment Schedule

Family and Type					c	ount	Total		COST
Radiant-ACB1-4: ACB1 12" Wide, Inlet 4"					4"	1	1327.75	\$	1,327.75
Radiant-ACB1-4: ACB1 12" Wide, Inlet 4"					4"	1	1327.75 \$1,327.75		1,327.75
				Duct Sch	nedu	le			
Size	Area	Le	ngth	Unitless Lengt	h Cro	ss Area	Volume Pe	er FT	Weight
13"x13"	88 SF	20' -	4 1/4"	20.354167	0.0	22 SF	0.02		70.34
14"ø	4 SF	1'	- 0"	1.000001	5.4	45938	0.037819	001	6.54
16"x16"	110 SF	20' -	6 7/8"	20.572917	0.0	26 SF	0.03		106.65
18"x18"	123 SF	20' -	6 7/8"	20.572917	0.0	35 SF	0.03		106.65
20"x20"	67 SF	10' -	1 9/32"	10.10551	0.0	38 SF	0.04		69.85
				Pipe Sch	edule	;		·	
Family a	nd Type	Size	Length	Unitless Length	Materia	l Labor	Equipmet	Total	COST
Pipe Types:	: Standard	1/2"ø	0' - 10 29/32	2" 0.909167	5.25	5.6	1.25	12.1	\$11.00
Pipe Types:	Standard	1/2"ø	0' - 7 31/32	." 0.662917	5.25	5.6	1.25	12.1	\$8.02
Pipe Types:	Standard	1/2"ø	1' - 0 29/32	." 1.075833	5.25	5.6	1.25	12.1	\$13.02

Mechanical Redesign Cost Assessment

CHILLED BEAMS	DUCTWORK	PIPING	PIPING PUMPS		TOTAL
\$9,608,000	\$2,966,400	\$377,840	\$165,484	\$2,274,046	\$21,035,567

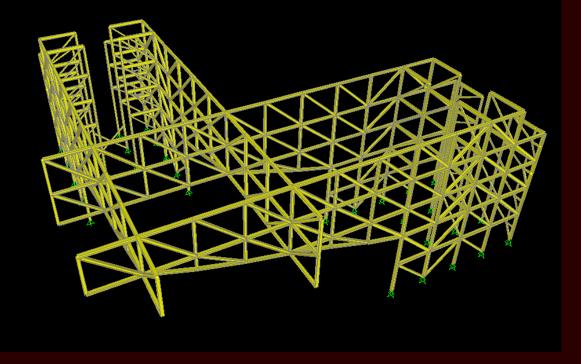
Cost Increase = \$1,847,567

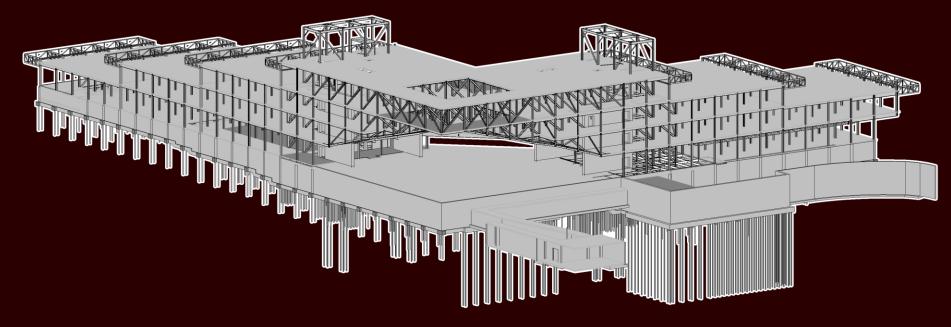
1	
Introd	luction

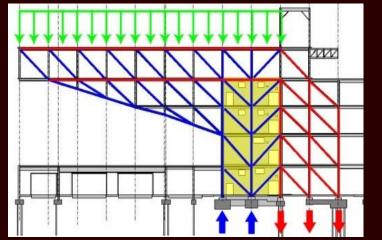
Coal Plant Findings						
	Real Rate	2% Inflation	5% Inflation			
VAV	\$54,813,916	\$63,883,395	\$63,856,220			
ACB	\$55,346,191	\$62,693,273	\$62,647,108			
Percent Savings	-0.97%	1.86%	1.89%			
NPV Differential	(\$532,275)	\$1,190,122	\$1,209,111			

If inflation occurs and PSU remains a coal fired plant, the Active Chilled Beam system should be considered

Comparing Life Cycle Costs of Mechanical Systems

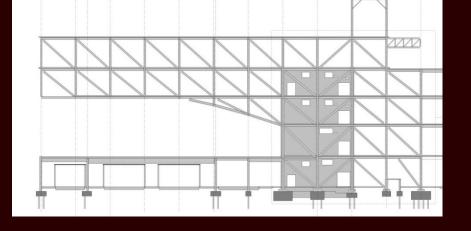

If PSU changes to a Natural Gas plant, the Active Chilled Beam system should be considered

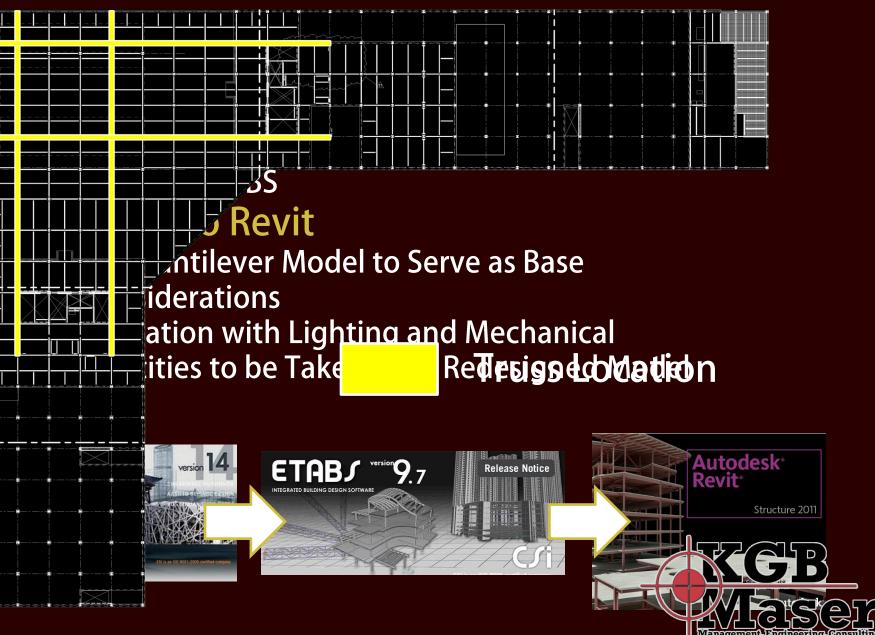

Natural Gas Plant			
	Real Rate	2% Inflation	5% Inflation
VAV	\$64,693,985	\$72,152,832	\$72,110,021
ACB	\$59,478,486	\$69,307,263	\$69,259,831
Percent Savings	8.06%	3.94%	3.95%
NPV Differential	\$5,215,499	\$2,845,568	\$2,850,190



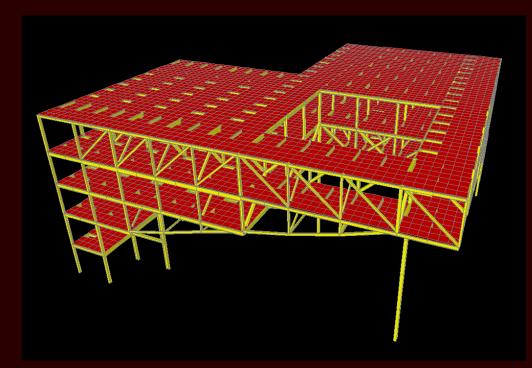
154ft. Overhang

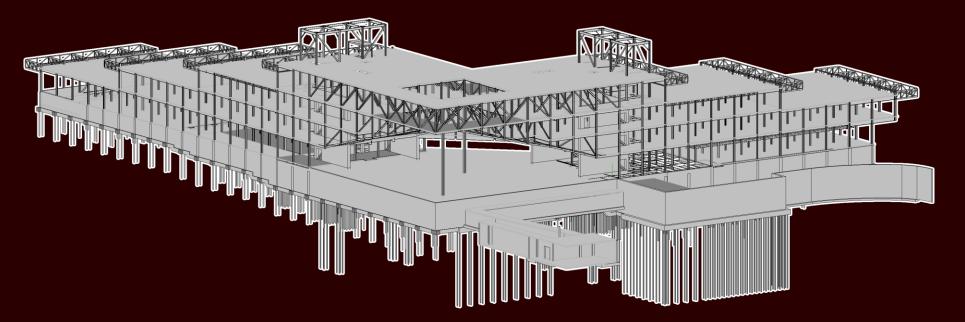
- 4 Main Trusses at Gridlines 2, 5, B, & E
- 11 Bays Lengthwise
- Moment Connections
- Members Oriented for Compression
- Sizes Ranging from W14X90 to W14X550
- Controlled by Deflection

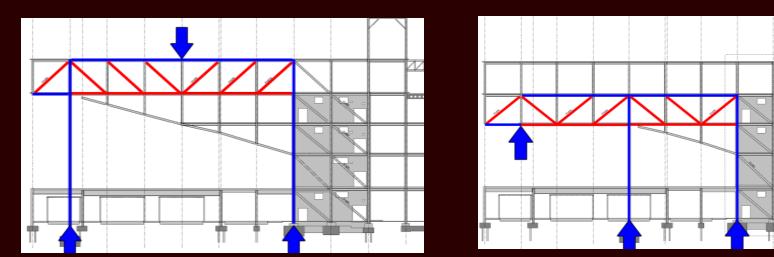




Summary of Implications


Existing Cantilever

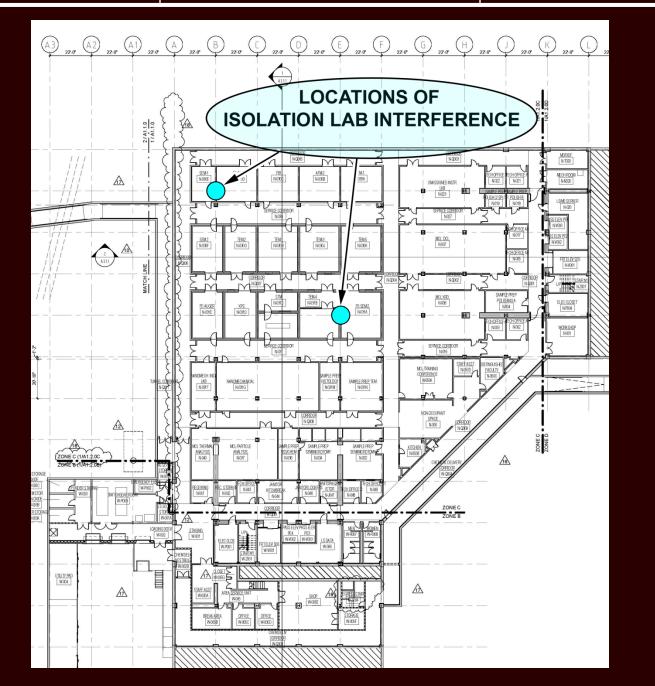


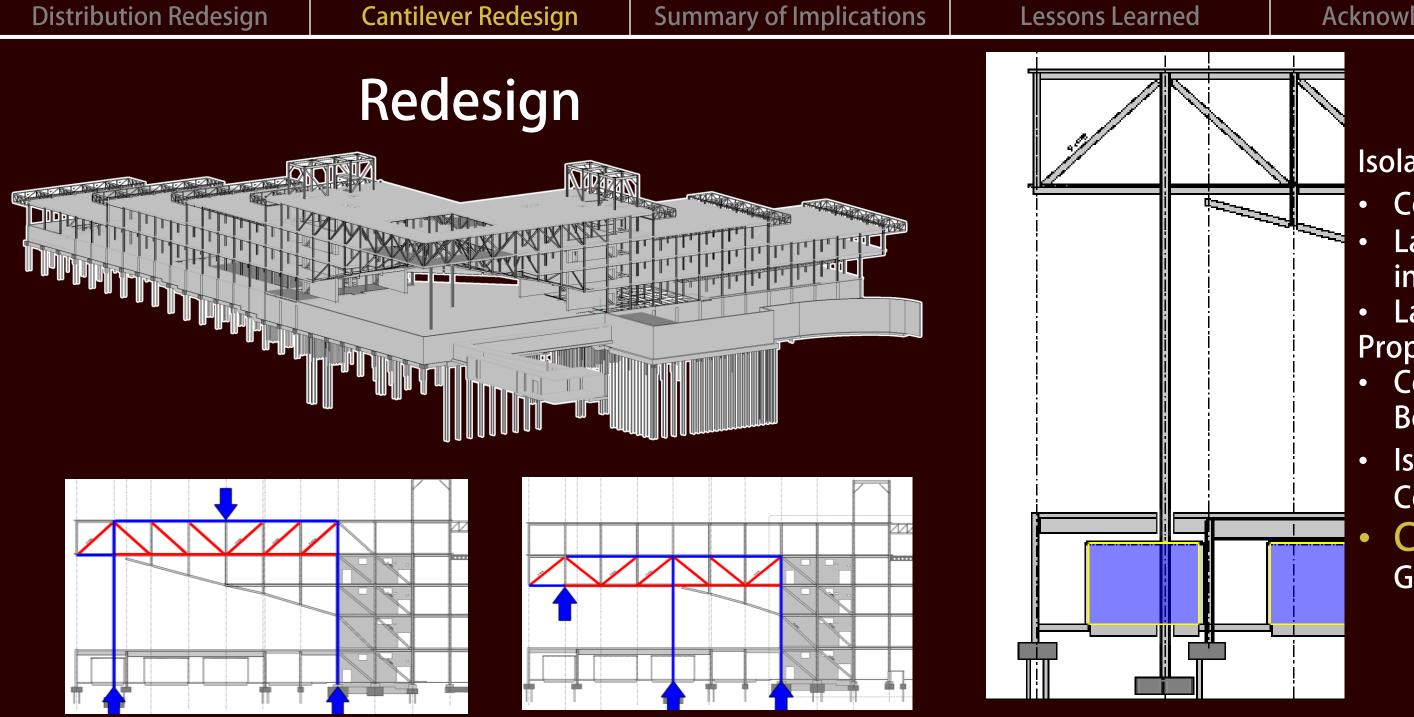


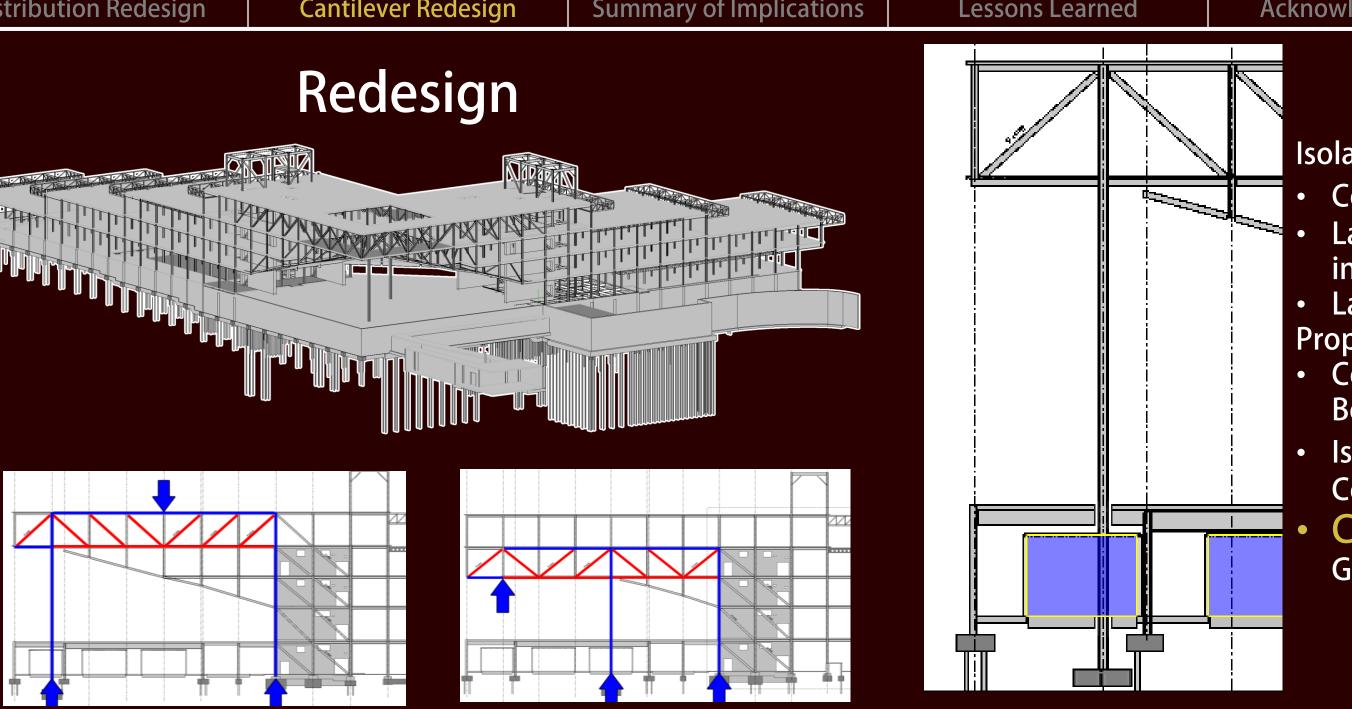
154ft. Overhang

- 4 Main Trusses at Gridlines 2, 5, B, & E
- 9 Bays Lengthwise
- Pin Connections
- Members Oriented for Tension
- Sizes Ranging from W14X90 to W14X311
- Controlled by Strength

Redesign


Actual BIM Process


- Build Complete Cantilever in SAP
- Analyze in SAP
- Redesign in SAP
- Replicate in Revit
- Use Existing Conditions Model and Modify **IPD** Considerations
- Integration with Lighting and Mechanical
- Quantities to be Taken from Redesigned Model



IPD/BIM Goals

Isolation Lab Interference Column Penetrates Through Slab Labs Limited to 130 micro inches/second Labs Sequestered from Foundation **Proposed Solution** Column Pile Caps 3ft. Beneath Bottom of Isolation Slabs Isolation Slabs **Poured Around** Columns **Compressive Material to Fill** Gap

Intro	odu	ction	

Structural Redesign Cost Implications

Existing Entire Structure								
	Framing Tons	Column Tons	Framing Cost	Column Cost				
	3058.7 Tons	953.84 Tons	\$8,179,891.34	\$2,386,659.20				
		Total =	\$10,566,550.54					
		Existing 3rd Flo	or Structure					
	Framing Tons	Column Tons	Framing Cost	Column Cost				
	595.72 Tons	231.47 Tons	\$1,848,680.85	\$434,508.19				
		Total =	\$2,283,189.04					

IPD/BIM Goals

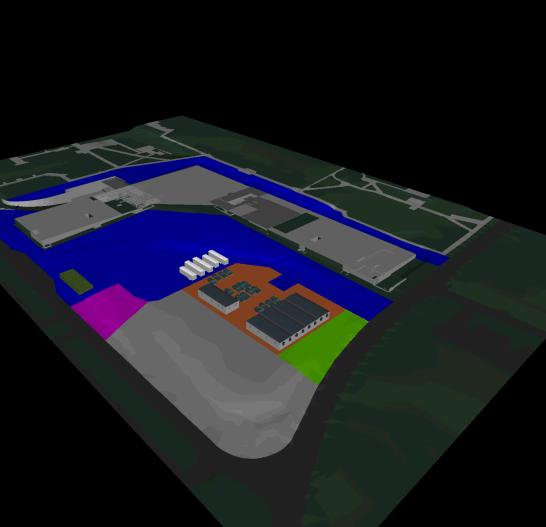
Redesign 3 rd Floor Structure											
	Framing Tons Column Tons Framing Cost Column Co										
	459.79 Tons	202.92 Tons	\$1,310,896.61	\$539,218.72							
		Total =	\$1,850,115.33								
Cost Implications to Entire Structure											

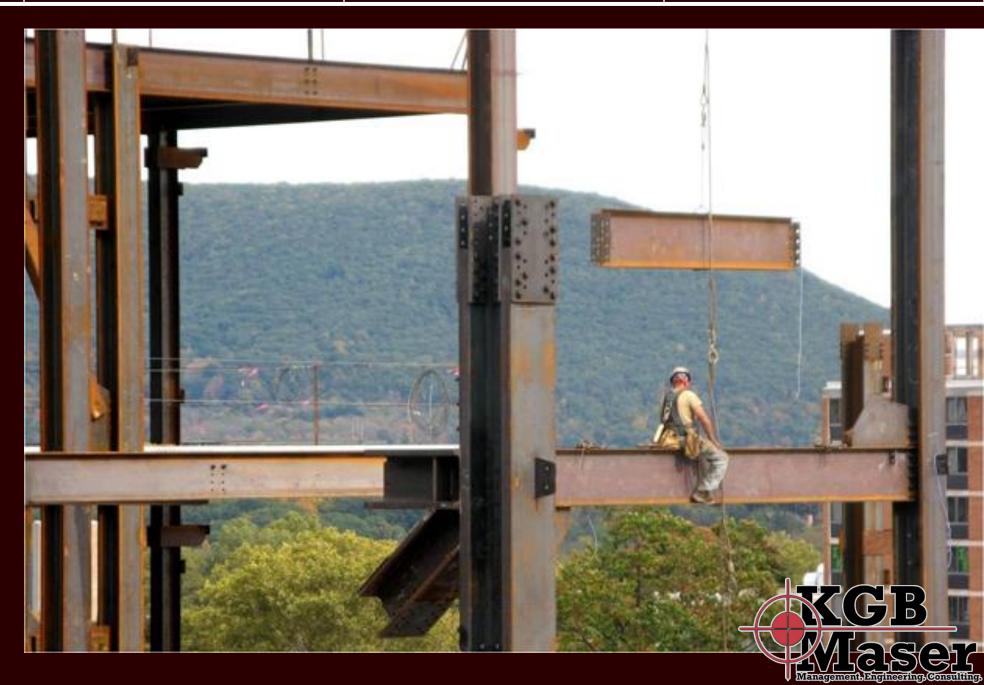
Savings/SF	Total SF	Total Savings	Total Cost	
\$8.3326/SF	274,922 SF	\$2,290,815.05	\$8,275,735.48	

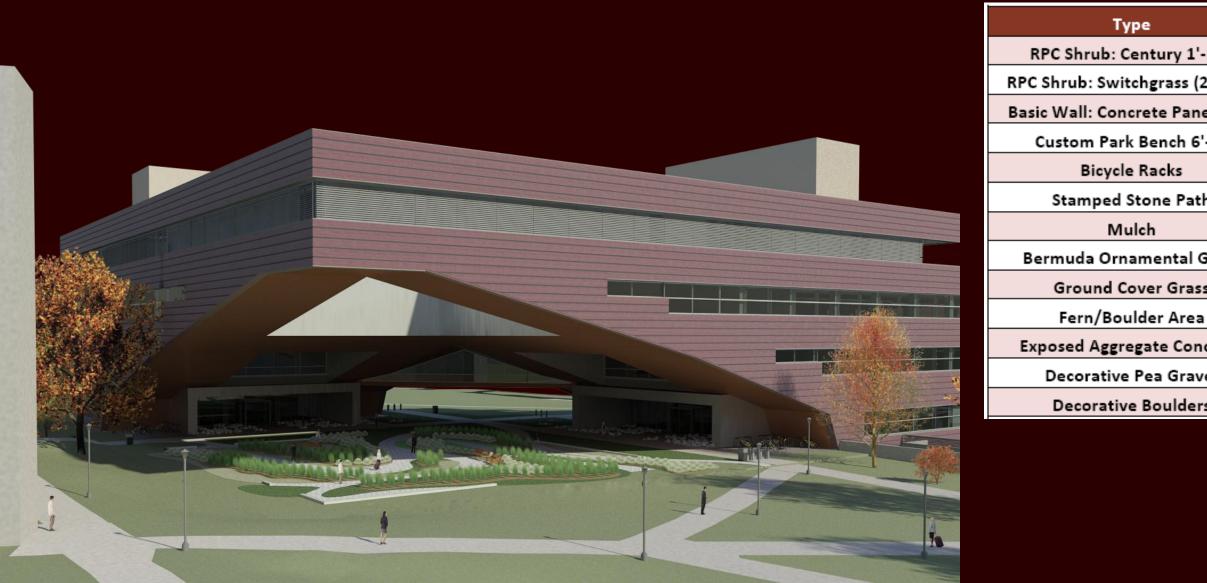
Introduction

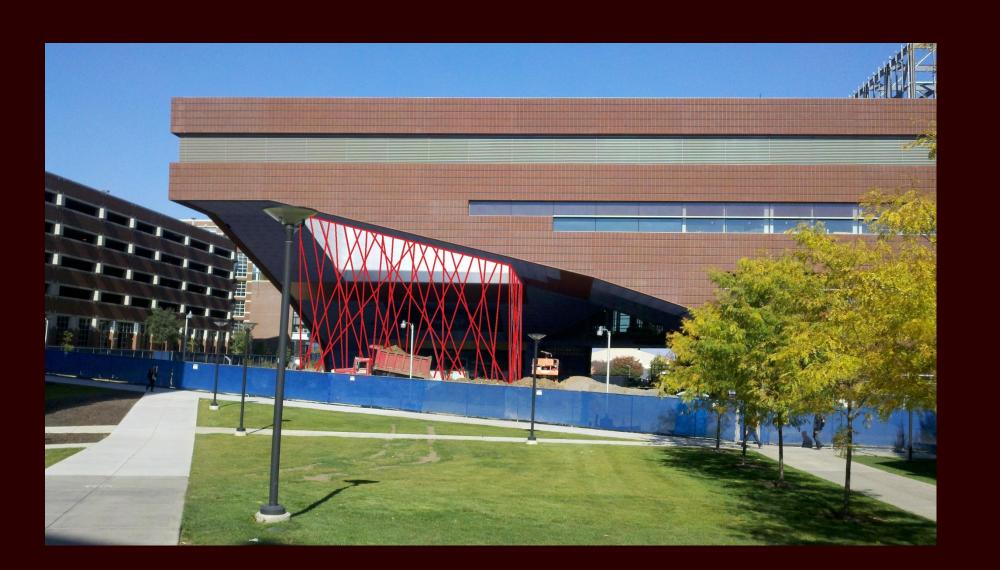
IPD/BIM Goals

Façade Redesign

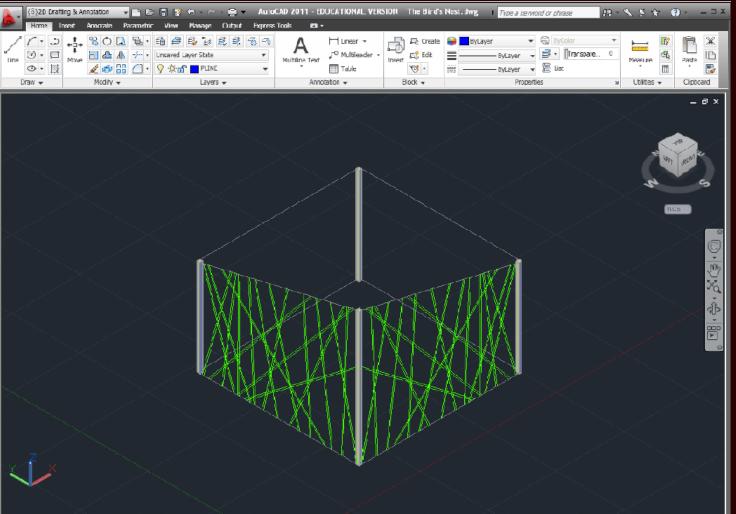

Distribution Redesign

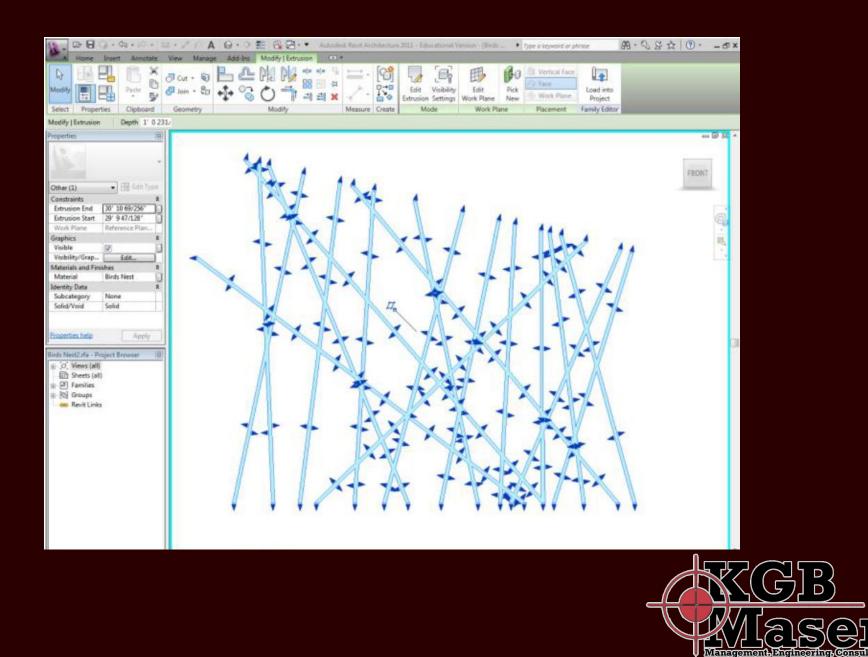



Steel Sequencing 4D Model



Existing Courtyard Design

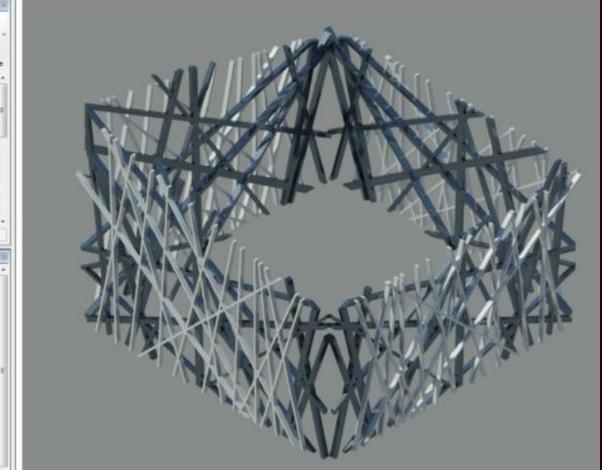

	Total	Unit	Cost Total	Cost Unit	Cost			
.'-10"	244	EA	22	EA	\$5,368.00			
(2) 4'-0"	327	EA	17.1	EA	\$5,591.70			
nel Wall	214.5	FT	11.45	LF	\$2,456.03			
6'-0"	5	EA	526.5	EA	\$2,632.50			
	8	EA	649	EA	\$5,192.00			
th	4271.75	SF	17.05	17.05 SF				
	4624.63	SF	2.91	SY	\$498.43			
Grass	1298.57	SF	50	SY	\$2,404.76			
ss	8487.97	SF	220	MSF	\$ 1,867.35			
a ncrete	Total Including O & P, Waste,							
vel	Delivery, & Time							
ers		M	odifications	= \$271,	745.24			

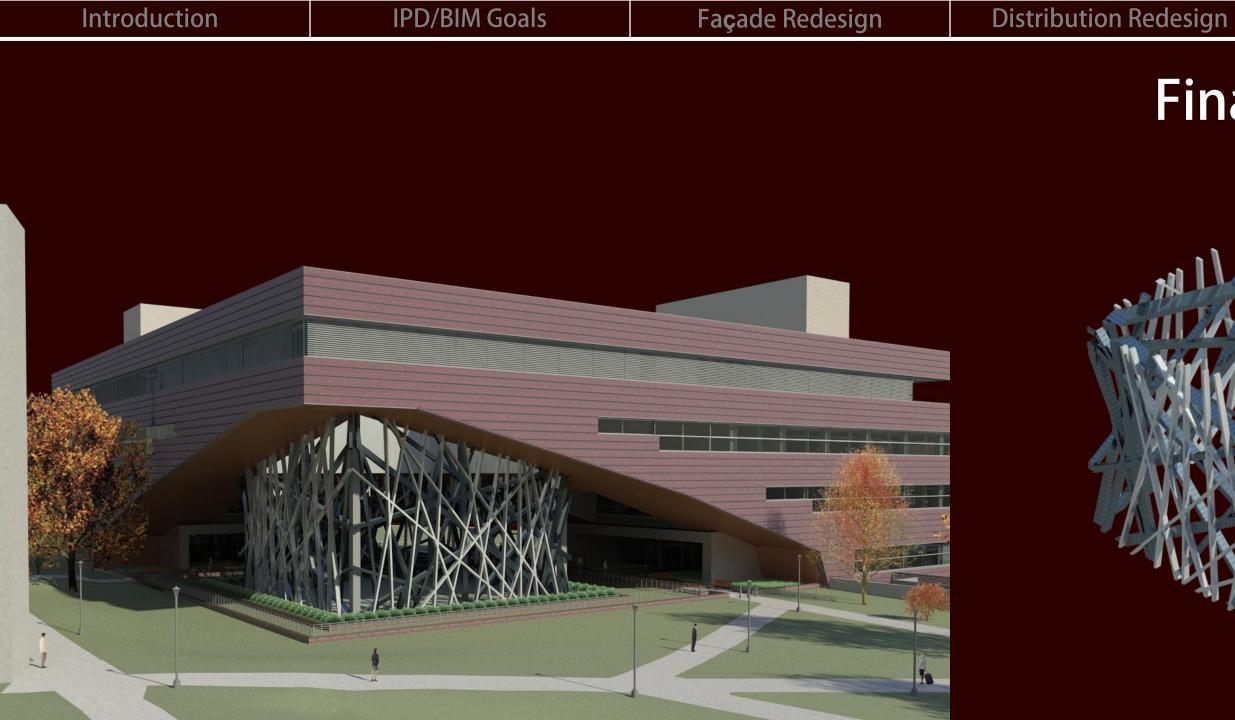


Summary of Implications

Lessons Learned

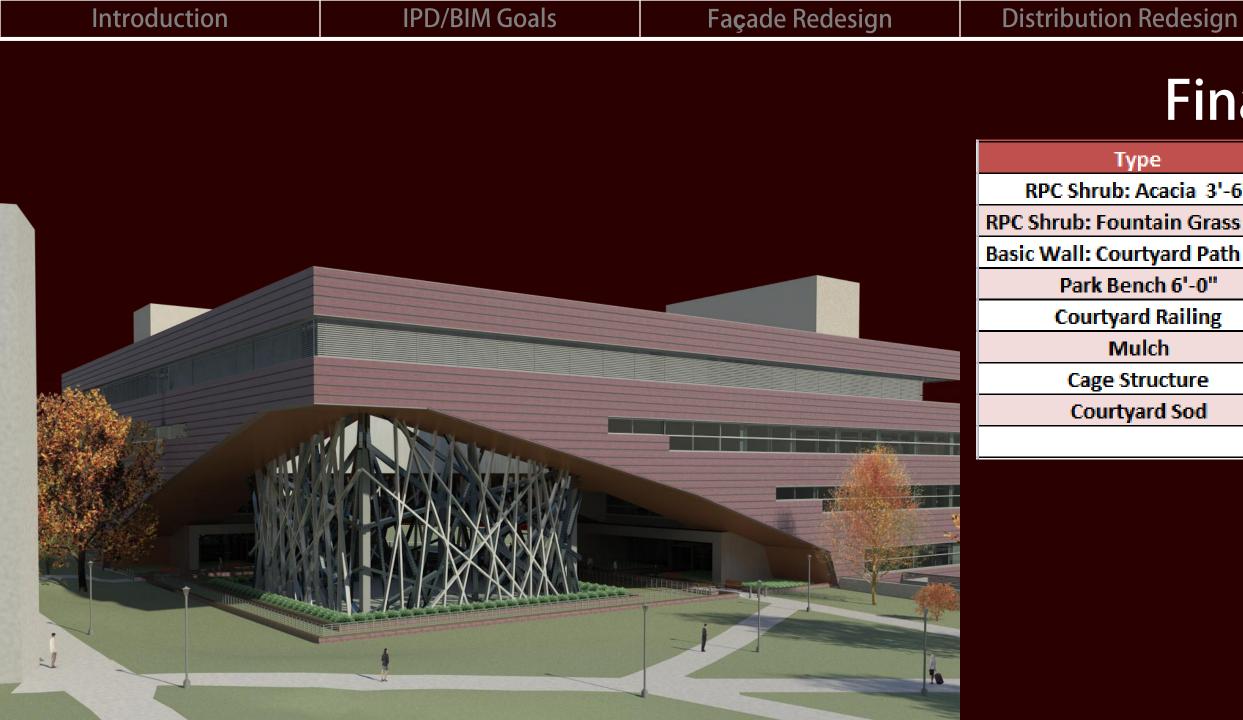
Cage Structure Development

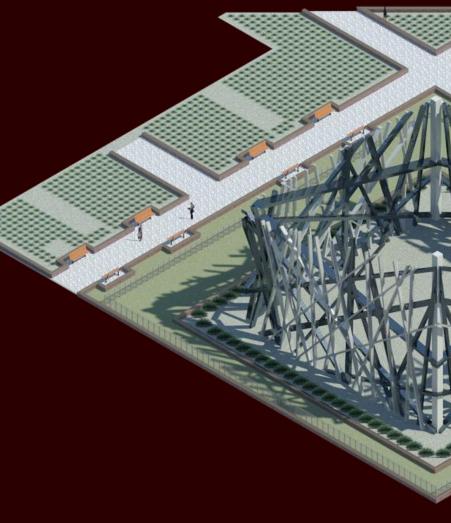

Acknowledgements


	;
	a · Ga · (2) ·
	R X
Modify III	Paste D
	• 9
Select Properti	es Clipboard
Proparties	
1.2	
10000	
30 View: (30)	- Edit Typ
Graphics	
View Scale	1/8" = 1'-0"
Scale Value 1:	06
Detail Level	Medium
Visibility/Grap	Edit
Visual Style	Hidden Line
Graphic Displ	Edit
Discipline	Architectural
Analysis Displ	None
Sun Path	
Identity Data	
View Name	(30)
Dependency	Independent
Title on Sheet	
Properties help	Apply
	1
Project1 - Project I	
I [I] Views (all)	
😑 - Floor Plan	
Level	
Level	2
Site	
⊟ Ceiling Pl	
Level	
Level	
III - 3D Views	
	s (Building Elevatio
East	
North	
South	
West	
E Legends	(Description)
	/Quantities
Sheets (all	
E Families	

e Structure Development

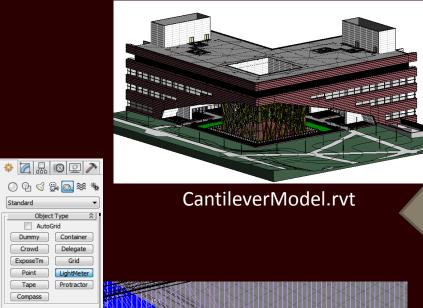
E-JPA	G · O E 🗟 🗟 · * Autodesk !	Revit Architecture 2	011 - Educational Version - (Projec) Type a key	そうろう ひちょうちゃ 第・のなな
	ing & Site Collaborate View Manag			
1K Cope • [31 €]		§ ·	[cf]	
0 Cut + 1 80		1. 2	0-0	
Join • 12	*** ````O	= .	100	
Geometry	Modify	View Measure	Create	



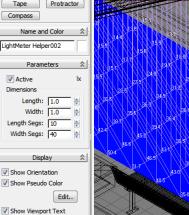

Final Courtyard Design

Final Courtyard Design

	Total	Unit	Total	Unit	Cost			
3'-6"	101	EA	63.8	EA	\$	6,443.80		
Grass 1'-6"	733	EA	21.01	EA	\$	15,400.33		
Path Wall	1617.89	LF	12.34	LF	\$	19,964.76		
0"	16	EA	448.5	EA	\$	7,176.00		
ing	486.5	LF	22.92	LF	\$	11,150.58		
	14492.05	SF	2.91	SY	\$	\$ 1,561.92		
e	1	EA	1	EA	\$	\$ 500,000.00		
d	9356.29	SF	265.95	MSF	\$	\$ 2,488.31		
	Total Including O & P,							
	Delivery, Waste, & Time							
		Mod	lifications	s = \$80	66,	984.16		



Introduction


IPD/BIM Goals

Façade Redesign

Distribution Redesign

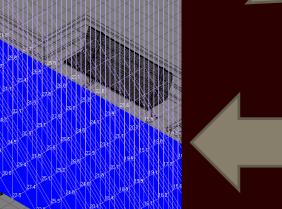
Export from Revit as Cantilever.fbx; Import to 3ds Max Design with File Link Manager

Values To Display

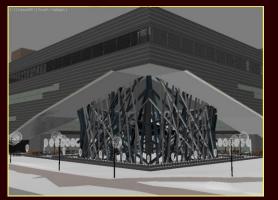
Standard

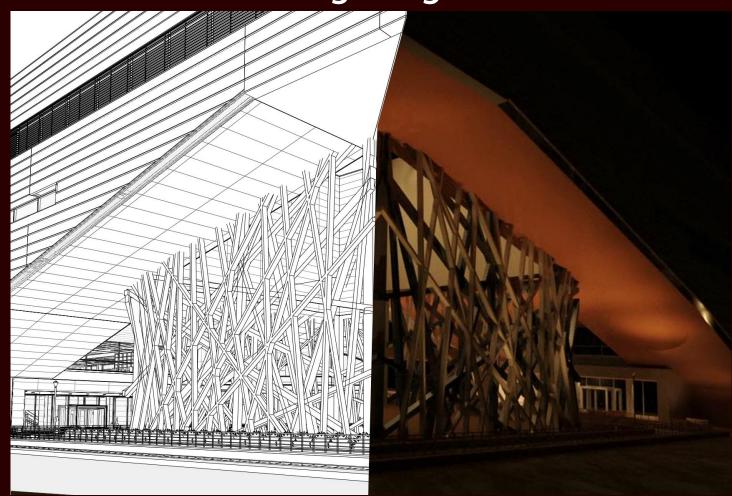
ExposeTn Point Tape

Compass

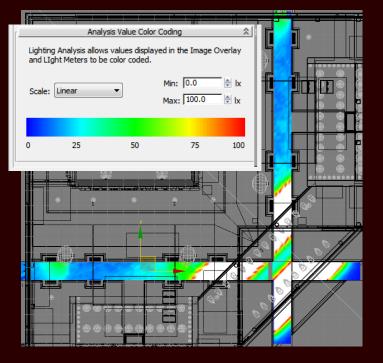

Object Type AutoGrid

Total Illuminance) Direct Illuminance) Indirect Illuminance

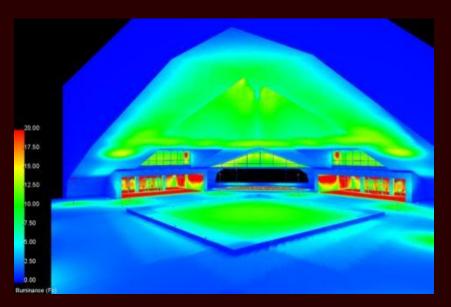

Daylight Factor


Export To CSV File

3ds Max Calc Points

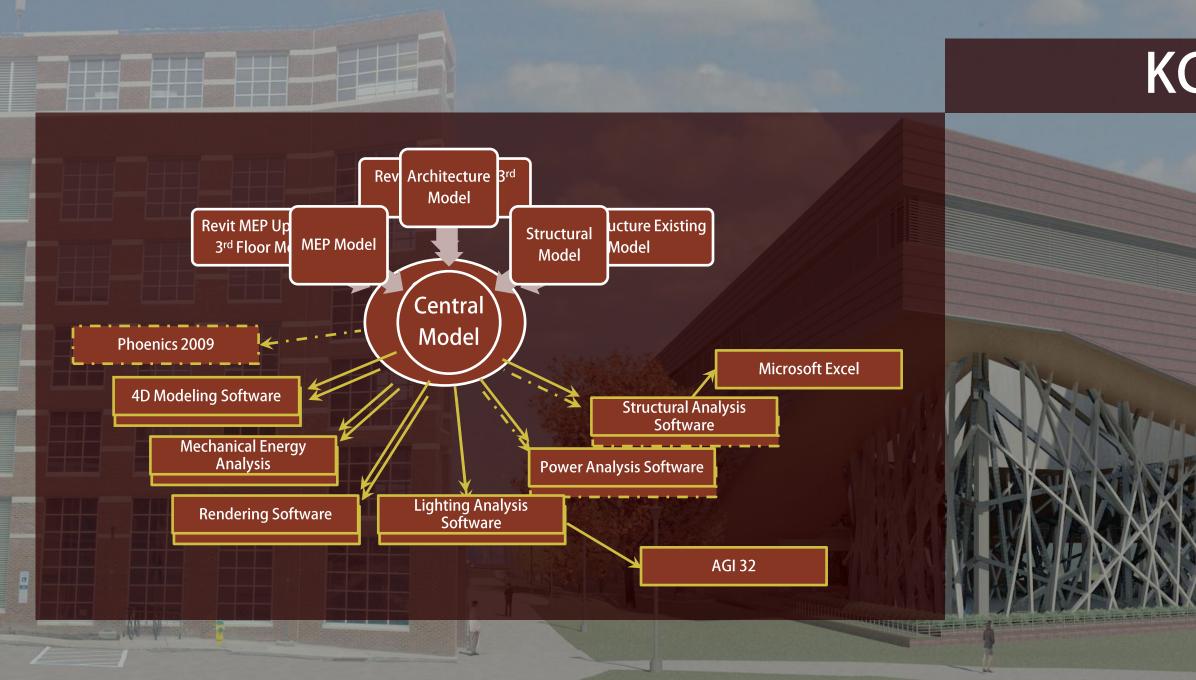


CantileverModel.max



Lessons Learned

Final Courtyard Design Lighting


Courtyard Illuminance Summary									
	AGI Illuminance (fc)			3ds Illuminance (fc)		AGI Specific Values			
Calculation Grid	Min.	Avg. N	Max.	Min.	Avg.	Max.	Max./Min	Coeff. Of	Uniformity
			man				•	Variation	Gradient
Paths	1.10	7.72	63.20	0.102 23.15 59.00		57.45	1.16	3.10	
LS Interior Well	1.90	10.32	72.40				38.11	0.59	13.30
LS Exterior Well	1.80	9.33	39.10	Not Mee erwed		21.72	0.41	7.48	
MS Interior Well	1.90	9.91	47.60	Not Measured			25.05	0.49	15.03
MS Exterior Well	2.00	9.68	54.10				27.05	0.51	18.03

Introduction	IPD/BIM Goals	Façade Redesign	Distribution Redesign		Cantilever Redesig	ever Redesign Summary of Impli				
			Summary of Cost Implications							
			SUMMARY OF SYSTEM FIRST COSTS							
				FAÇADE REDESIGN	STRUCTURAL REDESIGN	MECANICAL/ENE RGY REDESIGN	COURTYARD REDESIGN			
			EXISTING COST	\$3,295,766	\$10,566,550	\$19,188,000	\$271,745			
			PROPOSED COST	\$3,051,834	\$8,275,735	\$21,040,000	\$604,910			
			SAVINGS/EXPENSE	\$243,932	\$2,290,815	\$1,852,000	\$333,165			
			TOTAL F	FIRST CO	OST SAVIN	NGS = \$34	9,582			

KGB Maser Conclusions

Decreased energy consumption by 14.2%

 Reduced size and COSt of structural system: \$2,290,815

cost savings and **lower initial cost** in lighting and structural systems

Proposed façade provided marginal operating

Must work consistently in **COMMUNICATIVE** environment

Challenging to keep Uniform group formatting standards

 Need to explain technical reasoning behind each decision to all disciplines

IPD/BIM Lessons Learned

Adequate time must be allotted for **OVERCOMING** software design issues

 Not all information can be shared between modeling platforms; intermediate steps must be taken

• A higher level of coordination can be achieved during system designs

 Model sharing is a One way street outside of Revit platforms

MILLENNIUM SCIENCE COMPLEX - UNIVERSITY PARK, PA

The Thornton Tomasetti Foundation The Leonhard Center Penn State

Faculty Advisors **Bob Holland** Andres Lepage **Richard Mistrick** Ted Dannerth

Acknowledgements

Kevin Parfitt Jelena Srebric John Messner Moses Ling

Whiting Turner Chris Dolan

Penn State OPP **Dick Harris**

Corey Wilkinson

Paul Bowers

Thornton Tomasetti Engineers

Flack & Kurtz MEP Engineers

HOK John Jackson

Penn State Students Ryan Solnosky **Building Stimulus IPD/BIM Team BIMception IPD/BIM Team**

FUAGK+KURTZ

SKM Systems Analysis Johnny Ma **Ruperto Sanchez**

BR+A Consulting Engr. Britt Ellis

Michael Lucas Patrick Morgan

Questions and Comments

Thank you for your time

